

A Property Equivalent to \(n\)-Permutability for Infinite Groups

Alireza Abdollahi* and Aliakbar Mohammadi Hassanabadi †

Department of Mathematics, University of Isfahan, Isfahan, Iran

and

Bijan Taeri‡

Department of Mathematics, University of Technology of Isfahan, Isfahan, Iran

Communicated by Gernot Stroth

Received September 7, 1998

Let \(n\) be an integer greater than 1. A group \(G\) is said to be \(n\)-permutable whenever for every \(n\)-tuple \((x_1, \ldots, x_n)\) of elements of \(G\) there exists a non-identity permutation \(\sigma\) of \(\{1, \ldots, n\}\) such that \(x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(n)}\). In this paper we prove that an infinite group \(G\) is \(n\)-permutable if and only if for every \(n\) infinite subsets \(X_1, \ldots, X_n\) of \(G\) there exists a non-identity permutation \(\sigma\) on \(\{1, \ldots, n\}\) such that \(X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset\). © 1999 Academic Press

1. INTRODUCTION

Permutable groups have been studied by various people (for example, see [1–3, 5, 6]). Let \(n\) be an integer greater than 1. Recall that a group \(G\) is called \(n\)-permutable whenever for every \(n\)-tuple \((x_1, \ldots, x_n)\) of elements of \(G\) there exists a non-identity permutation \(\sigma\) of \(\{1, \ldots, n\}\) such that \(x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(n)}\). Also a group is said to be permutable if it is \(n\)-permutable for some integer \(n > 1\). The main result for groups in this class was obtained by Curzio et al. in [3], where it was shown that such

* E-mail: abdolahi@math.ui.ac.ir.
† E-mail: aamohaha@math.ui.ac.ir.
‡ E-mail: b.taeri@cc.iut.ac.ir.

570

0021-8693/99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.
groups are finite-by-abelian-by-finite. Let \(n > 1 \) and \(m \) be positive integers. Let \(S_n \) denote the group of all permutations on the set \(\{1, \ldots, n\} \).

A natural extension of permutable groups, namely \((m, n)\)-permutable groups, groups in which \(X_1 \cdots X_n \subseteq \bigcup_{\sigma \in S_n \setminus \{1\}} X_{\sigma(1)} \cdots X_{\sigma(n)} \) for all subsets \(X_i \) of \(G \) where \(|X_i| = m \) for all \(i = 1, \ldots, n \), was introduced by Mohammadi Hassanabadi and Rhemtulla in [9]. It was proved there that such a group either is \(n \)-permutable or is finite of order bounded by a function of \(m \) and \(n \). In [8] Mohammadi Hassanabadi investigated another extension of \((m, n)\)-permutable groups as follows. For positive integers \(n > 1 \) and \(m \) a group \(G \) is called restricted \((m, n)\)-permutable if \(X_1 \cdots X_n \cap \bigcup_{\sigma \in S_n \setminus \{1\}} X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset \) for all subsets \(X_i \) of \(G \) where \(|X_i| = m \) for all \(i = 1, \ldots, n \). It was proved there that such a group is finite-by-abelian-by-finite. In [4] Longobardi et al. called a group \(G \) a \(P_n^* \)-group \((n \) an integer greater than 1) if for every sequence \(X_1, \ldots, X_n \) of infinite subsets of \(G \) there exist \(x_i \) in \(X_i \) such that \(x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(n)} \) for some non-trivial permutation \(\sigma \) in \(S_n \). They proved that every infinite \(P_n^* \)-group is an \(n \)-permutable group. Here we deal with another extension of infinite restricted \((m, n)\)-permutable and \(P_n^* \)-groups.

Let \(n \) be an integer greater than 1. We call a group \(G \) a restricted \((1, n)\)-permutable group if \(X_1 \cdots X_n \cap \bigcup_{\sigma \in S_n \setminus \{1\}} X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset \) for all infinite subsets \(X_1, \ldots, X_n \) of \(G \).

Our main result is the following, which sharpens and generalizes that of [8] and also generalizes the result of [4] concerning \(P_n^* \).

Theorem. Every infinite restricted \((\infty, n)\)-permutable group is \(n \)-permutable.

2. PROOFS

To prove the theorem, we need the following results.

Lemma 2.1. Let \(G \) be an infinite residually finite group which is a restricted \((\infty, n)\)-permutable group. Then \(G \) is an \(n \)-permutable group.

Proof. Let \(x_1, \ldots, x_n \) be arbitrary elements of \(G \) and

\[
S = \{ x_1 \cdots x_n (x_{\sigma(1)} \cdots x_{\sigma(n)})^{-1} \mid \sigma \in S_n \setminus \{1\} \}.
\]

Suppose, for a contradiction, that \(1 \notin S \). Since \(G \) is residually finite and \(S \) is finite, there exists a normal subgroup \(N \) of finite index in \(G \) such that \(S \cap N = \emptyset \). Now considering infinite subsets \(N x_1, \ldots, N x_n \), there exists \(\sigma \in S_n \setminus \{1\} \) such that \(N x_1 \cdots N x_n \cap N x_{\sigma(1)} \cdots N x_{\sigma(n)} \neq \emptyset \) and so \(x_1 \cdots x_n (x_{\sigma(1)} \cdots x_{\sigma(n)})^{-1} \in N \), which is a contradiction. \(\blacksquare \)
Lemma 2.2. Let $G = \prod_{i \in I} G_i$ be an infinite direct product of non-abelian subgroups. Then G is not a restricted (∞, n)-permutable group for all integers $n > 1$.

Proof. Suppose, for a contradiction, that G is a restricted (∞, n)-permutable group for some integer $n > 1$. We show that G is an n-permutable group, which contradicts Corollary 2.9 of [1]. Let $x_1, \ldots, x_n \in G$ and put $S = \{x_1 \cdots x_n (x_{\sigma(1)} \cdots x_{\sigma(n)})^{-1} \mid \sigma \in S_n \setminus \{1\}\}$. Let k be any integer greater than $|S|$. Since G is an infinite direct product of normal subgroups, there exist k infinite normal subgroups N_1, \ldots, N_k of G such that $N_i \cap N_j = 1$ for all distinct $i, j \in \{1, \ldots, k\}$. Let $l \in \{1, \ldots, k\}$ and consider infinite subsets $N_i x_1, \ldots, N_i x_n$. By the hypothesis, there exist two distinct $i, j \in \{1, \ldots, k\}$ and an element $s \in S$ such that $s \in N_i \cap N_j = 1$ and so G is an n-permutable group. \qed

We denote by A^{-1} the set $\{a^{-1} \mid a \in A\}$ for any non-empty subset A of a group. Let a and g be arbitrary elements of a group G. We define $S(a, g) := \{x \in G \mid a^x = g\}$ which is either an empty set or a right coset of the centralizer of a in G.

A key result required in the proof of the theorem is the following:

Lemma 2.3. Let G be an infinite restricted (∞, n)-permutable group. Then the FC-centre of G is non-trivial.

Proof. Suppose, for a contradiction, that the FC-centre of G is trivial. We construct n infinite subsets X_1, \ldots, X_n of G such that
\[X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} = \emptyset\]
for all non-identity permutations σ in S_n. For this, for each $m \in \mathbb{N}$ we construct n subsets $X_{i,m} = \{a_{i,1}, \ldots, a_{i,m}\}$ of G ($i = 1, \ldots, n$), such that
\[X_{1,m} \cdots X_{n,m} \cap X_{\sigma(1),m} \cdots X_{\sigma(n),m} = \emptyset\] (#)
for all non-identity permutations σ in S_n. We argue by induction on m. Let $m = 1$. By Lemma 2.1 in [3], G is not an n-permutable group and so there exist $a_{1,1}, \ldots, a_{n,1} \in G$ such that $a_{1,1} \cdots a_{n,1} \neq a_{\sigma(1),1} \cdots a_{\sigma(n),1}$ for all $\sigma \in S_n \setminus \{1\}$. Now suppose that we have already defined subsets $X_{i,m} = \{a_{i,1}, \ldots, a_{i,m}\}$ of G ($i = 1, \ldots, n$) satisfying (#) for all $\sigma \in S_n \setminus \{1\}$.

Suppose that we have already defined $a_{i,m+1}$ and so $X_{i,m+1}$ for $i = 1, \ldots, r$ such that for all $\sigma \in S_n \setminus \{1\}$
\[X_{1,m+1} X_{2,m+1} \cdots X_{r,m+1} X_{r+1,m+1} \cdots X_{n,m} \cap X_{\sigma(1),m+1} \cdots X_{\sigma(n),m+1} = \emptyset\]
where \(j_i = m + 1 \) whenever \(\sigma(t) \in \{1, \ldots, r\} \) and otherwise \(j_i = m \). Let \(T_{r+1} \) be the union of all the following sets where \(\sigma \) varies over \(S_n \setminus 1 \),

\[
X_{\sigma(1), j_1} \cdots X_{\sigma(n), s_n}
\]

where \(s_j = m + 1 \) whenever \(\sigma(l) \in \{1, \ldots, r\} \) and otherwise \(s_j = m \); also \(i \) varies over \(\{1, \ldots, n\} \) and if \(i = 1 \) or \(i = n \) then we define respectively \(X_{\sigma(l), s_l} \) and \(\sigma(l) \) for all \(\sigma \in S_n \setminus 1 \).

Let

\[
U_{r+1} = X_{r, m+1}^{-1} \cdots X_{1, m+1}^{-1} \left(\bigcup_{1 \neq \sigma \in S_n} X_{\sigma(1), j_1} \cdots X_{\sigma(n), j_n} \right) X_{n, m}^{-1} \cdots X_{r+2, m}^{-1}
\]

where \(j_i = m + 1 \) whenever \(\sigma(l) \in \{1, \ldots, r\} \) and otherwise \(j_i = m \). Now we prove that there exists an element \(a_{r+1, m+1} \in G \setminus U_{r+1} \) such that if \(X_{r+1, m+1} = \{a_{r+1, 1}, \ldots, a_{r+1, m+1}\} \) then for all \(\sigma \in S_n \setminus 1 \)

\[
X_{1, m+1} \cdots X_{r+1, m+1} X_{r+2, m+1} \cdots X_{n, m} \cap X_{\sigma(1), j_1} \cdots X_{\sigma(n), j_n} = \emptyset
\]

where \(j_i = m + 1 \) whenever \(\sigma(l) \in \{1, \ldots, r + 1\} \) and otherwise \(j_i = m \). Suppose not. Therefore \(a_1, a_2, \ldots, a_{i_1, i_2, \ldots, i_n} = a_{\sigma(1), j_1} a_{\sigma(2), j_2} \cdots a_{\sigma(n), j_n} \) for some \(1 \leq i_1, \ldots, i_{r+1} \leq m + 1, 1 \leq i_{r+2}, \ldots, i_n \leq m, 1 \leq j_1, \ldots, j_n \leq n \), and \(1 \leq j_1 \leq m + 1 \) whenever \(\sigma(s) \in \{1, \ldots, r + 1\} \). Suppose that \(\sigma(t) = r + 1 \). If \(i_{r+1} \neq m + 1 \) or \(j_i \neq m + 1 \) then we get contradiction with the induction hypothesis or the choice of \(a_{r+1, m+1} \). Therefore we must always have \(i_{r+1} = j_i = m + 1 \) and so

\[
\left(a_{r+2, i_2, \ldots, i_n} a_{\sigma(1), j_1} \cdots a_{\sigma(n), j_n} \right)^{-1}
\]

\[
= a_{r+1, i_2, \ldots, i_n}^{-1} a_{\sigma(1), j_1} \cdots a_{\sigma(n), j_n} a_{r+1, j_i}
\]

Now we define \(g_{\sigma} \) and \(f_{\sigma} \) for all \(\sigma \in S_n \setminus 1 \) as

\[
f_{\sigma} = \begin{cases}
 a_{r+2, i_2, \ldots, i_n} (a_{\sigma(1), j_1} \cdots a_{\sigma(n), j_n})^{-1} & \text{if } 1 \leq t \leq n - 1 \\
 a_{r+2, i_2, \ldots, i_n} a_{\sigma(n), j_n} & \text{if } t = n
\end{cases}
\]

and

\[
g_{\sigma} = \begin{cases}
 (a_{1, i_1} \cdots a_{r, i_r})^{-1} a_{\sigma(1), j_1} \cdots a_{\sigma(t-1), j_{t-1}} & \text{if } 2 \leq t \leq n \\
 (a_{1, i_1} \cdots a_{r, i_r})^{-1} & \text{if } t = 1
\end{cases}
\]

where \(t = \sigma^{-1}(r + 1) \). Hence \(a_{r+1, m+1} \in S(g_{\sigma}, f_{\sigma}) \) and so

\[
G = U_{r+1} \cup \left(\bigcup_{\sigma \in S_n \setminus 1} S(g_{\sigma}, f_{\sigma}) \right)
\]

(*)
where σ in (*) varies over the set of all non-identity permutations in S_n such that $S(g_{\sigma}, f_{\sigma}) \neq \emptyset$. Obviously the set of pairs (g_{σ}, f_{σ}) is finite. Therefore (*) shows that G is a finite union of right cosets of the centralizers of g_{σ}’s. Thus by the famous theorem of Neumann [10] there exists g_{σ} in the FC-centre of G such that $S(g_{\sigma}, f_{\sigma}) \neq \emptyset$. But by the hypothesis $g_{\sigma} = f_{\sigma} = 1$. Thus there exist $(n-1)$-tuples $(i_1, \ldots, i_r, i_{r+2}, \ldots, i_n)$ and $(j_1, \ldots, j_{r-1}, j_{r+1}, \ldots, j_n)$ where $1 \leq i_1, \ldots, i_r \leq m + 1$, $1 \leq i_{r+2}, \ldots, i_n \leq m$, $t = \sigma^{-1}(r + 1)$, and $j_i = m + 1$ whenever $1 \leq \sigma(i) \leq r$ and otherwise $j_i = m$ such that

$$d_{r+2, i_{r+2}} \cdots d_{n, i_n} \left(d_{\sigma(t+1), j_{t+1}} \cdots d_{\sigma(n), j_n} \right)^{-1} = \left(d_{1, i_1} \cdots d_{r, i_r} \right)^{-1} d_{\sigma(1), j_1} \cdots d_{\sigma(t-1), j_{t-1}} = 1.$$

So for any $a \in X_{r+1, m}$ we have the following, which contradicts the induction hypothesis:

$$a_{1, i_1} \cdots a_{r, i_r} a_{r+2, i_{r+2}} \cdots a_{n, i_n} = a_{\sigma(1), j_1} a_{\sigma(2), j_2} \cdots a_{\sigma(t-1), j_{t-1}} a_{\sigma(t+1), j_{t+1}} \cdots a_{\sigma(n), j_n}.$$

Therefore we have defined $X_{r+1, m+1}$. Thus we have inductively defined $X_{i, m} = \{a_{i, 1}, \ldots, a_{i, m}\}$ for all $m \in \mathbb{N}$ such that for all $\sigma \in S_n \backslash 1$

$$X_{1, m} \cdots X_{n, m} \cap X_{\sigma(1), m} \cdots X_{\sigma(n), m} = \emptyset.$$

Now set $X_i = \bigcup_{m=1}^{\infty} X_{i, m}$ $(i = 1, \ldots, n)$, then X_i is infinite and

$$X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} = \emptyset$$

for all $\sigma \in S_n \backslash 1$. Otherwise there exist n-tuples (i_1, \ldots, i_n) and (j_1, \ldots, j_n) on \mathbb{N} and $\pi \in S_n \backslash 1$ such that $a_{i_1, i_1} \cdots a_{i_n, i_n} = a_{\pi(1), j_1} \cdots a_{\pi(n), j_n}$. Let $s = \text{Max}\{i_1, \ldots, i_n, j_1, \ldots, j_n\}$. Then $X_{1, s} \cdots X_{n, s} \cap X_{\pi(1), s} \cdots X_{\pi(n), s} \neq \emptyset$, which is a contradiction with the construction of $X_{i, s}$ $(i = 1, \ldots, n)$. \]

By Lemma 2.3, every non-trivial restricted (∞, n)-permutable group has a non-trivial FC-element and since the class of restricted (∞, n)-permutable groups is closed under homomorphic images we have:

Corollary 2.4. Every restricted (∞, n)-permutable group is FC-hypercentral.

Lemma 2.5. Let G be an infinite restricted (∞, n)-permutable group. If G is finitely generated or non-periodic then G is an n-permutable group.
Proof. Suppose that G is finitely generated. By Corollary 2.4, G is FC-hypercentral. Now by a result of McLain [7] (or see p. 133 of [11]) a finitely generated FC-hypercentral group is nilpotent-by-finite. Therefore G is a finitely generated nilpotent-by-finite group and so G is residually finite. Thus G is n-permutable by Lemma 2.1. Now assume that G is non-periodic. Then there is an element x of infinite order in G. Let x_1, \ldots, x_n be arbitrary elements of G. By the previous part \langle x, x_1, \ldots, x_n \rangle is an n-permutable group and so G is n-permutable.

Lemma 2.6. Let G be a restricted (∞, n)-permutable group. Then G is hyperabelian-by-finite.

Proof. We may assume that G is infinite, and it suffices to show that G contains a non-trivial normal abelian subgroup. Suppose no such normal abelian subgroup exists, and let x be a non-identity element in the FC-centre of G which exists by Lemma 2.3. Let $N_1 := \langle x \rangle^G$ be the normal closure of $\langle x \rangle$ in G, and let $C := C_G(N_1)$. Then $|G : C|$ is finite and $N_1 \cap C = Z(N_1)$ is a normal abelian subgroup of G. Hence $N_1 \cap C = 1$. Therefore N_1 is finite and, having a trivial centre, it is certainly non-abelian. Now suppose, inductively, that we have already defined normal non-abelian finite subgroups N_1, \ldots, N_t of G such that N_1, \ldots, N_t generate their direct product in G. Write $D := C_G(N_1 \cdots N_t)$; thus $|G : D|$ is finite. Now using Lemma 2.3 we can choose a non-trivial element y in the FC-centre of D. Then y is an element of the FC-centre of G. Let $N_{t+1} := \langle y \rangle^G$. It is easily seen that N_{t+1} is a finite non-abelian group. Moreover, $N_{t+1} \subset D$, so that $N_1, \ldots, N_t, N_{t+1}$ generate their direct product in G. Thus we have found in G an infinite direct product $N_1 \times N_2 \times \cdots \times N_t \times \cdots$ of finite non-abelian groups, which together with Lemma 2.2 gives a contradiction.

Lemma 2.7. Let G be an infinite restricted (∞, n)-permutable group which is not Černikov. Then G is an n-permutable group.

Proof. By Lemma 2.5, we may assume that G is periodic. By Lemma 2.6, there exists a normal hyperabelian subgroup H of finite index in G. Therefore H is a periodic locally soluble group and G is locally finite. Let x_1, \ldots, x_n be arbitrary elements in G and let A be the finite subgroup generated by x_1, \ldots, x_n. We note that H is not a Černikov group and A can be regarded as a finite group of automorphisms of H. Now by a result of Zaicev [13], there exists an abelian subgroup B of H which is not Černikov and B is a normal subgroup of AB. Since B is periodic it is a direct product of the Sylow p-subgroups B_p of B. If infinitely many B_p are non-trivial, then since $|A|$ has only finitely many prime divisors, there exists an infinite subgroup D of B which is normal in AB such that $A \cap D = 1$. Consider the n infinite subsets Dx_1, \ldots, Dx_n. By the hypothesis there exists
and so \(x_1 \cdots x_n (x_{\sigma(1)} \cdots x_{\sigma(n)})^{-1} \in A \cap D = 1 \). Therefore \(x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(n)} \) as required. So assume that there exist only finitely many \(B_p \) which are non-trivial. Since \(B \) is not a Černikov group and since the product of two normal Černikov subgroups of a group is a Černikov group, then there exists a prime number \(p \) such that \(B_p \) is not Černikov. Thus by Theorem 4.3.13 of [12], \(C = \{ b \in B \mid b^p = 1 \} \) is an infinite elementary abelian \(p \)-group. Clearly \(C \) is normal in \(AB \). Now the infinite group \(AC \) is a residually finite-by-finite group and so \(AC \) is residually finite. Therefore by Lemma 2.1, \(AC \) is an \(n \)-permutable group and the proof is complete.

\begin{proof}
We need the following remark in the final step of the proof of the theorem. Here \(|x| \) denotes the order of an element \(x \) of a group.

\textbf{Remark 2.8.} We note that if \(x_1, \ldots, x_n \) \((n > 1)\) are \(p \)-elements \((p \) a prime\) of distinct orders in an abelian group then \(r < |x_1 \cdots x_n| \leq t \) where \(r = \min\{|x_1|, \ldots, |x_n|\} \) and \(t = \max\{|x_1|, \ldots, |x_n|\} \).

\textbf{Proof of the Theorem.} Let \(G \) be an infinite restricted \((\infty, n)\)-permutable group. By Lemma 2.7, we may assume that \(G \) is a Černikov group. Thus there exists an infinite normal subgroup \(A \) of \(G \) which is a direct product of finitely many groups isomorphic to \(C_{p^\infty} \), the quasicyclic \(p \)-group, for some prime number \(p \). Let \(x_1, \ldots, x_n \in G \) and let \(X \) be the finite subgroup generated by \(x_1, \ldots, x_n \) (we note that \(G \) is locally finite). Let \(Y \) be the group of automorphisms of \(A \) induced by the elements of \(X \) under conjugation. Then \(Y \) is finite. Let \(a_0 \) be an integer such that \(|a| \leq p^{a_0} \) for any \(a \in X \cap A \). By Lemma 3.5 of [4] there are infinite sequences \(a_0 < a_1 < \cdots \) of integers and \(a_1, a_2, \ldots \) of elements of \(A \) such that for any \(i \), \(|a_i| = p^{a_i} \), and \([a_i, y]| > p^{a_i-1}, \) for any \(y \in Y \setminus C_Y(a_i) \). Now partition the set \(\{ a_i \mid i \geq 1 \} \) into \(n \) infinite disjoint subsets \(J_i, i = 1, \ldots, n \). Consider the set \(J_i x_i, i = 1, \ldots, n \), and let \(\sigma \in S_n \setminus 1 \) be such that

\begin{equation}
(a_{i_1} x_{i_1}) \cdots (a_{i_n} x_{i_n}) = (a_{j_1} x_{\sigma(1)}) \cdots (a_{j_n} x_{\sigma(n)})
\end{equation}

for suitable \(a_i \in J_1, \ldots, a_n \in J_n \) and \(a_{j_1} \in J_{\sigma(1)}, \ldots, a_{j_n} \in J_{\sigma(n)} \). Therefore

\[x = (x_1 \cdots x_n)^{-1} x_{\sigma(1)} \cdots x_{\sigma(n)} = a_{i_1}^{-1} \cdots a_{i_n}^{-1} a_{j_1}^{x_{\sigma(1)}} \cdots a_{j_n}^{x_{\sigma(n)}}. \]

We note that \(i_1, \ldots, i_n \) are pairwise distinct as are \(j_1, \ldots, j_n \). If

\[\{i_1, \ldots, i_n\} \cap \{j_1, \ldots, j_n\} = \emptyset \]
then by Remark 2.8, $p^{\alpha t} < |x|$ where $r = M \ln \{i_1, \ldots, i_n, j_1, \ldots, j_n\}$, which is a contradiction, since $\alpha > \alpha_t$ and $x \in X \cap A$. Thus $F = \{i_1, \ldots, i_n\} \cap \{j_1, \ldots, j_n\} \neq \emptyset$. Let $|F| = s$. We may assume, without loss of generality, that $i_1 = j_1, \ldots, i_s = j_s$. Then we may write

$$x = [a_{i_1}, y_1]^{\alpha_1} \cdots [a_{i_s}, y_s]^{\alpha_s} a_{i_{s+1}}^{\alpha_{s+1}} \cdots a_{i_n}^{\alpha_n} (a_{j_{s+1}}^{\alpha_{j_{s+1}}} \cdots a_{j_n}^{\alpha_{j_n}})^{-1},$$

for some $y_1, \ldots, y_n, z_1, \ldots, z_n \in X$. Now suppose, for a contradiction, that $x \neq 1$. If $[a_{i_1}, y_1] = \cdots = [a_{i_s}, y_s] = 1$ then $s < n$, since $x \neq 1$. Then since $i_{s+1}, \ldots, i_n, j_{s+1}, \ldots, j_n$ are pairwise distinct, by Remark 2.8, $|x| > p^{\alpha_t}$ where $k = M \ln \{i_{s+1}, \ldots, i_n, j_{s+1}, \ldots, j_n\}$, which is a contradiction. Thus we may assume, without loss of generality, that $y_l \in Y \backslash C_Y(a_l)$, for $l = 1, \ldots, s$ and $i_1 < \cdots < i_s$. Now we claim that the elements

$$[a_{i_1}, y_1], [a_{i_2}, y_2], [a_{i_{s+1}}, y_{s+1}], \ldots, [a_{i_n}, y_n], [a_{j_{s+1}}, y_{s+1}], \ldots, [a_{j_n}, y_n]$$

have distinct orders. For, since $p^{\alpha_{l-1}} < |[a_{i_l}, y_l]| \leq p^{\alpha_l}$ for $l = 1, \ldots, s$ and $\alpha_0 < \cdots < \alpha_s$, then the elements $[a_{i_1}, y_1], \ldots, [a_{i_s}, y_s]$ have distinct orders. Clearly $a_{i_{s+1}}^{\alpha_{s+1}}, \ldots, a_{i_n}^{\alpha_n}$ have distinct orders. If there exist $l \in \{1, \ldots, s\}$ and $k \in \{s+1, \ldots, n\}$ such that $|[a_{i_l}, y_l]| = |a_{i_k}|$ or $|[a_{i_l}, y_l]| = |a_{i_k}|$, then since $p^{\alpha_{l-1}} < |[a_{i_l}, y_l]| \leq p^{\alpha_l}, \alpha_l = \alpha_{l_k}$ or $\alpha_l = \alpha_{l_k}$ and so $i_l = i_k$ or $i_l = j_k$, a contradiction. Now by Remark 2.8, $p^l < |x|$, where

$$p' = M \ln \{|[a_{i_1}, y_1]|, \ldots, |[a_{i_s}, y_s]|, |a_{i_{s+1}}^{\alpha_{s+1}}|, \ldots, |a_{i_n}^{\alpha_n}|, |a_{j_{s+1}}^{\alpha_{s+1}}|, \ldots, |a_{j_n}^{\alpha_n}|\}.$$