Finite p-groups of class 2 have noninner automorphisms of order p ✩

A. Abdollahi a,b

a Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
b Institute for Studies in Theoretical Physics and Mathematics (IPM), Iran

Received 4 April 2006
Available online 14 December 2006
Communicated by Gernot Stroth
Dedicated to Professor Aliakbar Mohammadi Hassanabadi

Abstract

We prove that for any prime number p, every finite non-abelian p-group G of class 2 has a noninner automorphism of order p leaving either the Frattini subgroup $\Phi(G)$ or $\Omega_1(Z(G))$ elementwise fixed.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Automorphisms of p-groups; Nilpotent groups of class 2; Noninner automorphisms

1. Introduction

Let p be a prime number and G be a non-abelian finite p-group. A longstanding conjecture asserts that G admits a noninner automorphism of order p (see also Problem 4.13 of [7]). By a famous result of W. Gaschütz [3], noninner automorphisms of G of p-power order exist. M. Deaconescu and G. Silberberg [2] reduced the verification of the conjecture to the case in which $C_G(Z(\Phi(G))) = \Phi(G)$. H. Liebeck [5] has shown that finite p-groups of class 2 with $p > 2$ must have a noninner automorphism of order p fixing the Frattini subgroup elementwise. It follows from a cohomological result of P. Schmid [6] that the conjecture is true whenever G is regular. Here we show the validity of the conjecture when G is nilpotent of class 2. In fact we prove that

✩ This research was in part supported by a grant from IPM (No. 85200032).
E-mail address: a.abdollahi@math.ui.ac.ir.

0021-8693/– see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2006.08.036
Remark 2.2. Let G be a finite nilpotent group of class 2 such that $G' = \langle [a, b]\rangle$ for some $a, b \in G$. Then by a well-know argument (e.g., see the proof of Lemma 1 of [1]) we have $G = \langle a, b\rangle C_G((a, b))$. We give it here for the reader’s convenience: for any $x \in G$, we have $[a, x] = [a, b]^s$ and $[b, x] = [a, b]^t$ for some integers s, t. Then $[a, b^{-s}a^tx] = 1$ and $[b, b^{-s}a^tx] = 1$. Hence $b^{-s}a^tx \in C_G((a, b))$ and so $G = \langle a, b\rangle C_G((a, b))$.

Remark 2.3. Let G be a nilpotent group of class 2, $x, y \in G$ and $k > 0$ be an integer. Then since $[y, x] = y^{-1}x^{-1}yx \in Z(G)$, it is easy to see by induction on k that $(xy)^k = x^ky^k[y, x]^{\frac{k(k-1)}{2}}$. Also we have $[x, y]^m = [x^m, y] = [x, y^m]$ for all integers m.

We shall make frequent use of Remark 2.3 without reference in the proof of the Theorem. Especially we use it in such a sample situation: if we know that x and y are two elements in a nilpotent 2-group of class 2, $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ such that $|[x, y]| = 2^n$ and $x^m2^n = y^{-2^n}$, then by Remark 2.3 and the hypothesis we have

\[(x^m)^{2^n} = x^{m2^n}y^{2^n}[y, x]^{2^{n-1}(2^n-1)} = [y, x]^{m2^n(2^n-1)}.
\]

Since $[x, y] = [x, x^m]$ and $|[x, y]| = 2^n$, we have that $(x^m)^{2^n-1} \neq 1$ and so $2^n \mid |x^m|$. It follows that $|x^m| = 2^{n+1}$, if m is odd, and $|x^m| = 2^n$, if m is even.

Remark 2.4. Let G be a finite p-group of class 2. If G has no noninner automorphism of order p leaving $\Phi(G)$ elementwise fixed, then $Z(G)$ must be cyclic. In fact by the part (a) of the proof of [5, Theorem 1], we have G' is cyclic. Now if $Z(G)$ is not cyclic, then $\Omega_1(Z(G))$ is not cyclic and so $\Omega_1(Z(G)) \neq G'$. Now take an element $z \in \Omega_1(Z(G)) \backslash G'$, a maximal subgroup M of G and $g \in G \backslash M$. Then the map α on G defined by $(mg^i)^\alpha = mg^i z^i$ for all $m \in M$ and integers i, is a noninner automorphism of order p leaving M (and so $\Phi(G)$) elementwise fixed, a contradiction.

Note that if $Z(G) = \Phi(G)$, then one may replace the latter argument by the part (iv) of Lemma 2 of [5].

Remark 2.5. Let G be a group and H, K be subgroups of G such that $G = HK$ and $[H, K] = 1$. If there exists a noninner automorphism φ of order p in $\text{Aut}(H)$ leaving $Z(H)$ elementwise

Theorem. For any prime number p, every finite non-abelian p-group G of class 2 has a noninner automorphism of order p leaving either the Frattini subgroup $\Phi(G)$ or $\Omega_1(Z(G))$ elementwise fixed.
fixed, then the map β on G defined by $(hk)\beta = h^\varphi k$ for all $h \in H$ and $k \in K$ is a noninner automorphism of G of order p leaving $Z(G)$ elementwise fixed. It is enough to show that β is well defined and this can be easily seen, because $x^\varphi = x$ for all $x \in H \cap K = Z(H)$, by hypothesis.

3. Proof of the Theorem

By the main results of [2] and [5], we may assume that $\Phi(G) = C_G(Z(\Phi(G)))$ and $p = 2$. By Remark 2.4, we may further assume that $Z(G)$ is cyclic. Now Remark 2.1 implies that there exist elements $a, b \in G$ such that $G' = \langle [a, b] \rangle$. Let $H = \langle a, b \rangle$. Then it follows from Remark 2.2 that $G = HC_G(H)$ and by Remark 2.5 it is enough to construct a noninner automorphism φ of H of order 2 leaving $Z(H)$ elementwise fixed.

Note that $|G'| = |H'| = |\langle a, b \rangle| = 2^n$ for some integer $n > 0$. Since G' is cyclic and $G' \leq Z(G)$,

$$\exp\left(\frac{G}{Z(G)}\right) = \exp\left(\frac{H}{Z(H)}\right) = 2^n,$$

which implies that $Z(H) = \langle a^{2^n}, b^{2^n}, [a, b] \rangle \leq Z(G)$. If $n = 1$, then $\Phi(G) = G^2 \leq Z(G)$. Since $\Phi(G) = C_G(Z(\Phi(G)))$, we have $G = \Phi(G)$, which is impossible. Therefore $n \geq 2$. Since $Z(H)$ is cyclic, either $a^{2^n} = b^{2^n}$ or $a^{2^n} = b^{2^(n-1)}$ for some integer i. Suppose that $a^{2^n} = b^{2^n}$. If i is even, then $|a^{-i}b| = 2^n$ and $(a^{-i}b)^{2^{n-1}} \notin Z(H)$, as $[a, b] = [a, a^{-i}b]$ has order 2^n. If $c = a^{-i}b$, then the map φ on H defined by $(a^s c^t x)^\varphi = (a^{2^{n-1}})^s c^t x$ for all $x \in Z(H)$ and integers s, t, is a noninner automorphism of H of order 2 leaving $Z(H)$ elementwise fixed. If $a^{2^n} = b^{2^n}$ and i is even, then we can similarly construct such a $\varphi \in \text{Aut}(H)$.

Hence, from now on we may assume that $a^{2^n} = b^{2^n}$ for some odd integer i and so $c = a^{-i}b$ has order 2^{n+1}.

Now suppose that $[a, b] \notin \langle a^{2^n} \rangle$. Then $Z(H) = \langle a^{2^n} \rangle$ and so $|a^{2^n}| \geq 2^n$. Thus $a^{2^n} j = c^{2^n}$ for some integer j. Since $n \geq 2$, $|a^{2^n}| \geq 2^n$ and $|c| = 2^{n+1}$, j must be even. This implies that $d = a^{-j}c$ has order 2^n and $d^{2^{n-1}} \notin Z(H)$, as $[a, b] = [a, d]$ is of order 2^n. Hence the map φ on G defined by $(a^s d^t x)^\varphi = (ad^{2^{n-1}})^s d^t x$ for all $x \in Z(H)$ and integers s, t is the desired automorphism φ of H.

Thus we may assume that $[a, b] \notin \langle a^{2^n} \rangle$. Since $Z(H) = \langle a^{2^n}, [a, b] \rangle$ is cyclic, it follows that $Z(H) = \langle [a, b] \rangle = H'$. On the other hand,

$$\frac{H}{Z(H)} = \langle aZ(H) \rangle \times \langle bZ(H) \rangle$$

and $|\langle aZ(H) \rangle| = |\langle bZ(H) \rangle| = 2^n$, which implies that the element $e = a^{-2^n} b^{2^n-1}$ does not belong to $Z(H)$ and $|e| = 2$ as $n \geq 2$. Now the map φ on H defined by $(a^s b^t x)^\varphi = (ae)^s (be)^t x$ for all $x \in Z(H)$ and integers s, t is the required automorphism φ. This completes the proof. \hfill \Box

Acknowledgment

The author thanks the Center of Excellence for Mathematics, University of Isfahan.
References