Minimal coverings of completely reducible groups
By A. ABDOLLAHI (Isfahan) and S. M. JAFARIAN AMIRI (Zanjan)

Abstract. Let G be a group that is a set-theoretic union of finitely many proper subgroups. Cohn defined $\sigma(G)$ to be the least integer m such that G is the union of m proper subgroups. Determining σ is an open problem for most non-solvable groups. In this paper we give a formula for $\sigma(G)$, where G is a completely reducible group.

1. Introduction and results

Let G be a group that is a set-theoretic union of finitely many proper subgroups and by a cover (or covering) of G we mean any finite set of proper subgroups whose set-theoretic union is the whole group G. Cohn [4] defined $\sigma(G)$ to be the least integer m (if it exists) such that G has a covering with m subgroups (we call any such covering minimal) and otherwise $\sigma(G) = \infty$. A result of Neumann [12] states that if G is a union of m proper subgroups, then the intersection of these subgroups is of finite index in G. It follows that in study of $\sigma(G)$, we may assume that G is finite. It is an easy exercise that $\sigma(G)$ can never be 2, so $\sigma(G) \geq 3$. Groups that are the union of three proper subgroups, as $C_2 \times C_2$ is for example, are investigated in papers [6], [7], [14]. Also groups G with $\sigma(G) \in \{3, 4, 5\}$ and $\sigma(G) = 6$ are characterized in [4] and [1], respectively. However Tomkinson [15] proved that there is no group with $\sigma(G) = 7$. Cohn [4] showed that for any prime power p^a there exists

Mathematics Subject Classification: 20D60.
Key words and phrases: covering groups by subgroups, completely reducible groups, simple groups.

This work was in part supported by a grant from the Center of Excellence for Mathematics, University of Isfahan. The research of the first author was in part supported by a grant from IPM (No. 85200032).
a solvable group \(G \) with \(\sigma(G) = p^a + 1 \). In fact, Tomkinson [15] established that \(\sigma(G) - 1 \) is always a prime power for solvable groups \(G \). It is natural to ask what can be said about \(\sigma(G) \) for non-solvable groups. Bryce, Fedri and Serena begun this project in [3], where they calculated \(\sigma(G) \) for the linear groups \(G \in \{ \text{PSL}_2(q), \text{PGL}_2(q), \text{SL}_2(q), \text{PGL}_2(q) \} \). They obtained the formula \(\frac{1}{2}q(q + 1) \) for even prime powers \(q \geq 4 \) and the formula \(\frac{1}{2}q(q + 1) + 1 \) for odd prime powers \(q \geq 5 \). Moreover Lucido [10] studied this problem for the simple Suzuki groups and found that \(\sigma(\text{Sz}(q)) = \frac{1}{2}q^2(q^2 + 1) \), where \(q = 2^{2m+1} \).

Marótı [11] gave exact or asymptotic formulas for \(\sigma(\text{Sym}_n) \) and \(\sigma(\text{Alt}_n) \). In particular, it is shown in [11] that if \(n > 1 \) is odd, then \(\sigma(\text{Sym}_n) = 2^{n-1} \) unless \(n = 9 \) and \(\sigma(\text{Sym}_n) \leq 2^{n-2} \) if \(n \) is even. Also Marótı proved that if \(n \neq 7, 9 \), then \(\sigma(\text{Alt}_n) \geq 2^{n-2} \) with equality if and only if \(n \) is even but not divisible by 4.

Holmes in [8] obtained \(\sigma(S) \) for some sporadic simple groups \(S \). See also [9] for some related results. Thus the situation for non-solvable groups seems to be totally different from solvable ones.

A group \(G \) is called completely reducible if it is a direct product of simple groups. In the sequel a completely reducible group will be called a CR-group. Note that in a CR-group, every normal subgroup is a direct factor (see [13, Theorem 3.3.12]). A CR-group is centerless if and only if it is a direct product of non-abelian simple groups. A finite group \(G \) contains a normal centerless CR-subgroup which contains all normal centerless CR-subgroups; this subgroup is called the centerless CR-radical of \(G \). For more details concerning CR-groups, see [13, pp. 88–89]. In this paper we prove the following results.

Theorem 1.1. Let \(G \) be a finite group. If \(G = A_1 \times A_2 \times \cdots \times A_n \), where \(A_i \) is a non-abelian simple group for each \(i \), then \(\sigma(G) = \min\{\sigma(A_1), \ldots, \sigma(A_n)\} \).

Theorem 1.2. Let \(G \) be a finite CR-group. Then \(\sigma(G) = \min\{\sigma(R), \sigma(G/R)\} \), where \(R \) is the centerless CR-radical of \(G \).

2. Proofs

We begin with the following easy lemma.

Lemma 2.1. Let \(G \) be a finite non-cyclic group. If \(M \) is a maximal subgroup of \(G \) such that \(\sigma(G) < \sigma(M) \), then either \(M \) is a normal subgroup of \(G \) or \(|G : M| \leq \sigma(G) - 1 \).

Proof. Suppose that \(M \not\triangleleft G \). Then \(M \) has \(|G : M| \) conjugates in \(G \). There are maximal subgroups \(A_i \) of \(G \) for which \(G = \cup_{i=1}^{\sigma(G)} A_i \) and \(M = \cup_{i=1}^{\sigma(G)} (M \cap A_i) \).
Since \(\sigma(G) < \sigma(M) \), then there exists \(j \in \{1, \ldots, \sigma(G)\} \) such that \(M = M \cap A_j \).
Hence for every \(x \in G \), there exist \(i_x \in \{1, \ldots, \sigma(G)\} \) such that \(M^x = A_{i_x} \).
Therefore \(|G : M| \leq \sigma(G) \). Now since \(G \neq \bigcup_{g \in G} M^g \), \(|G : M| \leq \sigma(G) - 1 \).

The following result which will be useful in the sequel, is a generalization of Lemma 4 of [4]. Its proof is similar to that of Lemma 4 of [4] and we give it for the reader’s convenience.

Proposition 2.2. Let \(G \) be a finite group such that \(G = H \times K \) for two subgroups \(H \) and \(K \) of \(G \). If every maximal subgroup of \(G \) contains either \(H \) or \(K \), then \(\sigma(G) = \min\{\sigma(H), \sigma(K)\} \).

Proof. Since every maximal subgroup \(M \) of \(G \) contains either \(H \) or \(K \), \(M \)
is equal to either \(H_0 \times K \) or \(H \times K_0 \), where \(H_0 \) is maximal in \(H \) and \(K_0 \) maximal in \(K \). Thus we may assume that \(G = (\bigcup_{i=1}^p H \times M_i) \bigcup (\bigcup_{j=1}^q N_j \times K) \), where \(p + q = \sigma(G) \), \(p, q \geq 0 \) and \(M_i \) is maximal in \(K \) and \(N_j \) is maximal in \(H \). Now we claim that one of \(p \) and \(q \) must be zero.

Let \(G_1 = \bigcup_{i=1}^p H \times M_i \) and \(G_2 = \bigcup_{j=1}^q N_j \times K \). If \(q \neq 0 \), then \(G_1 \neq G \) and so there exists an element \(a_2 \in G \setminus G_1 \). Therefore \(a_2 \notin M_i \) for all \(i \in \{1, \ldots, p\} \) and so \(aa_2 \notin G_1 \) for all \(a \in H \). Hence \(aa_2 \in G_2 \) for all \(a \in H \). Thus \(aa' \in G_2 \) for all \(a \in H \) and \(a' \in K \). Hence \(G_2 = G \) and \(p = 0 \).

Now if \(p = 0 \), then \(G = G_2 = (\bigcup_{j=1}^q N_j)K \), whence \(H = \bigcup_{j=1}^q N_j \). This implies that \(\sigma(H) \leq \sigma(G) = q \). Similarly if \(q = 0 \), then \(\sigma(K) \leq p = \sigma(G) \). But \(\sigma(G) \leq \min\{\sigma(H), \sigma(K)\} \) — see for example Lemma 2 in [4] — which gives the result.

Recall that a finite group \(G \) is said to be primitive if it has a maximal subgroup \(M \) such that the core of \(M \) in \(G \), \(M_G = \cap_{g \in G} M^g \) is trivial. In this situation we call \(M \) a stabilizer of \(G \). We need the following trichotomy of R. Baer on primitive groups.

Theorem 2.3 (Baer [2]). Let \(G \) be a finite primitive group with a stabilizer \(M \). Then exactly one of the following three statements holds:

1. \(G \) has a unique minimal normal subgroup \(N \), this subgroup \(N \) is self-centralizing (in particular, abelian), and \(N \) is complemented by \(M \) in \(G \).
2. \(G \) has a unique minimal normal subgroup \(N \), this \(N \) is non-abelian, and \(N \) is supplemented by \(M \) in \(G \).
3. \(G \) has exactly two minimal normal subgroups \(N \) and \(N^* \), and each of them is complemented by \(M \) in \(G \). Also \(C_G(N) = N^* \), \(C_G(N^*) = N \) and \(N \cong N^* \cong NN^* \cap M \).
Remark 2.4 (see Example 15.3(3) in p. 54 of [5]). Let G be a finite group.
(1) If M is a maximal subgroup of G, then G/M is a primitive group.
(2) If G is a non-abelian simple group, then $G \times G$ is a primitive group in which the diagonal subgroup $D = \{(g,g): g \in G\}$ is a stabilizer.

Lemma 2.5. Let H and K be non-abelian simple groups. If $G = H \times K$, then $\sigma(G) = \min(\sigma(H), \sigma(K))$.

Proof. If $H \cong K$, then $G \cong H \times H$ is a primitive group with stabilizer diagonal subgroup $D = \{(h,h): h \in H\}$. We have $D \cong H$ and D is a maximal subgroup of G which is not normal in G. If $\sigma(G) < \sigma(H) = \sigma(D)$, then by Lemma 2.1, $|G : D| \leq \sigma(G) - 1$. Since $|G : D| = |H|$, we have $|H| < \sigma(H)$ which is a contradiction. Thus $\sigma(G) \geq \sigma(H)$. Now the corollary to Lemma 2 of [4] completes the proof.

Thus we may assume that $H \not\cong K$. Then by Theorem 2.3 G is not a primitive group and so M_G is non-trivial for every maximal subgroup M of G. Therefore $M_G = H$ or $M_G = K$ and so $H \leq M$ or $K \leq M$. The proof is now complete by Proposition 2.2.

Proof of Theorem 1.1. We argue by induction on n. If $n = 1$, then the result is clear and if $n = 2$, then the result follows from Lemma 2.5. So we may assume that $n \geq 3$. If there exist distinct $i, j \in \{1, \ldots, n\}$ such that $A_i \cong A_j$ and $i < j$, then $G \cong G_1 = N \times A_i \times A_j$, where

$$N = \prod_{k \in \{1, \ldots, n\} \setminus \{i,j\}} A_k.$$

Now consider $M = N \times D$, where $D = \{(a,a): a \in A_i\}$ is the diagonal subgroup of $A_i \times A_i$. Then M is a maximal subgroup of G_1 which is not normal in G_1, since $D \not\trianglelefteq A_i \times A_i$. On the other hand, since $D \cong A_i$, by the induction hypothesis we have $\sigma(M) = \min\{\sigma(A_1), \ldots, \sigma(A_n)\}$. It follows from the corollary to Lemma 2 of [4] that $\sigma(G_1) \leq \sigma(M)$. Now suppose, aiming for a contradiction, that $\sigma(G_1) < \sigma(M)$. Then Lemma 2.1 implies that $|G_1 : M| < \sigma(G)$. Therefore $\sigma(G) > |A_i| > \sigma(A_i)$, which is the contradiction we sought. Hence $\sigma(G) = \sigma(M) = \min\{\sigma(A_1), \ldots, \sigma(A_n)\}$.

Now assume that $A_i \not\cong A_j$ for any two distinct $i, j \in \{1, \ldots, n\}$ and let $H = A_1 \times A_2 \times \cdots \times A_{n-1}$. We claim that every maximal subgroup S of G contains either H or A_n. If $A_n \not\leq S$, then $A_n \not\leq S_G$ and so $S_G = A_{i_1} \times \cdots \times A_{i_k}$, where $\{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n-1\}$. Since G_{S_G} is a primitive group, Theorem 2.3 implies that $k = n - 1$ and so $S_G = H \leq S$. The proof is now complete by Proposition 2.2 and induction hypothesis. □
Let by hypothesis and Proposition 2.2, it is enough to show that every

In this case K contains either A or R. If A /∈ M, then A /∈ MG. Thus there exists a normal subgroup N of prime order such that N /∈ MG. Since G/MG is a primitive group and N/MG is a minimal normal subgroup of G/MG, it follows from Theorem 2.3 that G/MG contains a unique minimal normal abelian subgroup. If R /∈ MG, then there exists a non-abelian simple normal subgroup S ⊆ R of G such that S /∈ MG. Thus SMG is a minimal normal subgroup of G/MG, and so it is abelian, a contradiction. This implies that R ≤ MG ≤ M. Now the proof follows from Proposition 2.2.

Proposition 2.6. Let H be a finite CR-group whose center is of odd order and let Symn be the symmetric group of degree n ≥ 5. Then σ(H × Symn) = min{σ(H), σ(Symn)}.

Proof. By hypothesis and Proposition 2.2, it is enough to show that every maximal subgroup M of G = H × Symn contains either H or Symn. If H /∈ M, then H /∈ MG and so, as H is a CR-group, there exists a (non-abelian or abelian) simple normal subgroup S contained in H such that S /∈ MG. Therefore S ∩ MG = 1 and SMG ∼ S is a (simple) minimal normal subgroup of G/MG. Also MG ∩ Symn = 1, Altn or Symn.

We dismiss the first two of these possibilities.

(1) If MG ∩ Symn = 1, then Symn ∼ SMG ≤ G/MG. Since Altn ≤ Symn, K = MG/Alt is a minimal normal subgroup of G/MG. Now we claim that K ≠ SMG; if X = Alt, MG = SMG and each product is direct. Now C_G(MG) = Z(MG) ∩ Alt = Z(MG)S so C_(MG)' = Alt = S ≤ H, a contradiction. Since G/MG is primitive, Theorem 2.3 implies that C_G(SMG/MG) = K. Thus Symn ∼ MG/Symn ≤ K ∼ Alt, which is a contradiction.

(2) In this case MG ∩ Symn = Alt and so MG/Symn is a normal subgroup of order 2, therefore central in the primitive group G/MG. Thus by Theorem 2.3, K ∼ C_2. Since S ∼ SMG ≤ G/MG, we have that S ∼ C_2 and so the center of H is of even order, contradicting the hypothesis.

Hence MG ∩ Symn = Symn ≤ MG ≤ M. This completes the proof.

Acknowledgment. The authors are grateful to the referee for valuable suggestions.
References

[9] P. E. Holmes and A. Maróti, Sets of elements that generate a linear or a sporadic simple group pairwise, Preprint.

ALIREZA ABDOLLAHI
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ISFAHAN
ISFAHAN 81746-73441
IRAN
AND
INSTITUTE FOR STUDIES IN THEORETICAL PHYSICS AND MATHEMATICS (IPM)
E-mail: a.abdollahi@math.ui.ac.ir
URL: http://www.dr-abdollahi.ir

S. M. JAFARIAN AMIRI
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
ZANJAN UNIVERSITY
ZANJAN
IRAN
E-mail: sm_jaf@yahoo.ca

(Received October 10, 2006; revised December 22, 2006)