We associate a graph C_G of a non locally cyclic group G (called the non-cyclic graph of G) as follows: take $G \setminus \text{Cyc}(G)$ as vertex set, where \text{Cyc}(G) = \{x \in G \mid \langle x, y \rangle \text{ is cyclic for all } y \in G\}$ is called the cyclicizer of G, and join two vertices if they do not generate a cyclic subgroup. For a simple graph Γ, $\omega(\Gamma)$ denotes the clique number of Γ, which is the maximum size (if it exists) of a complete subgraph of Γ. In this paper we characterize groups whose non-cyclic graphs have clique numbers at most 4. We prove that a non-cyclic group G is solvable whenever $\omega(C_G) < 31$ and the equality for a non-solvable group G holds if and only if $G/\text{Cyc}(G) \cong A_5$ or S_5.

Keywords: Non-cyclic graph; diameter; domination number; solvable groups.

2000 Mathematics Subject Classification: Primary 20D60, Secondary 05C25

1. Introduction and Results

Let G be a non locally cyclic group. Following [2], the non-cyclic graph C_G of G is defined as follows: take $G \setminus \text{Cyc}(G)$ as vertex set, where \text{Cyc}(G) = \{x \in G \mid \langle x, y \rangle \text{ is cyclic for all } y \in G\}$, and join two vertices if they do not generate a cyclic subgroup. We call the complement of C_G, the cyclic graph of G, which has the same vertex set as C_G and two distinct vertices are adjacent whenever they generate a cyclic subgroup. The cyclic graph of G will be denoted by $\overline{C_G}$.

We consider simple graphs which are undirected, with no loops or multiple edges. For any graph Γ, we denote the sets of the vertices and the edges of Γ by $V(\Gamma)$ and $E(\Gamma)$, respectively. The degree $d_{\Gamma}(v)$ of a vertex v in Γ is the number of edges incident to v and if the graph is understood, then we denote $d_{\Gamma}(v)$ simply
by $d(v)$. The order of Γ is defined $|V(\Gamma)|$. A graph Γ is regular if $d(v) = d(w)$ for any two vertices v and w. A subset X of the vertices of Γ is called a clique if the induced subgraph on X is a complete graph. The maximum size of a clique in a graph Γ is called the clique number of Γ and is denoted by $\omega(\Gamma)$. If there exists a path between two vertices v and w in Γ, then $d_\Gamma(v, w)$ denotes the length of the shortest path between v and w; otherwise $d_\Gamma(v, w) = \infty$. If the graph is understood, then we denote $d_\Gamma(v, w)$ simply by $d(v, w)$. The largest distance between all pairs of the vertices of Γ is called the diameter of Γ, and is denoted by $\text{diam}(\Gamma)$. A graph Γ is connected if there is a path between each pair of the vertices of Γ. So disconnected graphs have infinite diameter. For a graph Γ and a subset S of the vertex set $V(\Gamma)$, denote by $N_\Gamma[S]$ the set of vertices in Γ which are in S or adjacent to a vertex in S. If $N_\Gamma[S] = V(\Gamma)$, then S is said to be a dominating set (of vertices in Γ). The domination number of a graph Γ, denoted by $\gamma(\Gamma)$, is the minimum size of a dominating set of the vertices in Γ. A planar graph is a graph that can be embedded in the plane so that no two edges intersect geometrically except at a vertex at which both are incident. We denote the symmetric group on n letters and the alternating group of degree n by S_n and A_n, respectively. Also Q_8 and D_{2n} are used for the quaternion group with 8 elements and dihedral group of order $2n$ ($n > 2$), respectively.

The present work is a continuation of that of [2]. In Sec. 2, we study the diameter and domination number of the cyclic and non-cyclic graphs. In Sec. 3, we characterize all groups whose non-cyclic graphs have clique numbers ≤ 4. In Sec. 4, we classify all groups whose non-cyclic graphs are planar or Hamiltonian. Finally in Sec. 5, we give a sufficient condition for solvability, by proving that a group G is solvable whenever $\omega(C_G) < 31$. We also prove the bound 31 cannot be improved and indeed the equality for a non-solvable group G holds if and only if $G/Cyc(G) \cong A_5$ or S_5.

2. On the Diameter and Domination Numbers of the Non-Cyclic Graph and its Complement

We first observe that to study the diameter of the non-cyclic graph, we may factor out the cyclicizer. Recall that if there exists a path between two vertices v and w in a graph Γ, then $d(v, w)$ denotes the length of the shortest path between v and w; otherwise $d(v, w) = \infty$. The largest distance between all pairs of the vertices of Γ is called the diameter of Γ, and is denoted by $\text{diam}(\Gamma)$. Thus if Γ is disconnected then $\text{diam}(\Gamma) = \infty$.

Lemma 2.1. Let G be a non locally cyclic group. Then $\overline{C_G}$ is connected if and only if $\overline{C_G}$ is connected, $\text{diam}(\overline{C_G}) = \text{diam}(\overline{C_G})$ and $\text{diam}(\overline{C_G}) = \text{diam}(\overline{C_G})$. Moreover, corresponding connected components of $\overline{C_G}$ and $\overline{C_G}$ have the same diameter when the component in $\overline{C_G}$ is not an isolated vertex.
Proof. It is enough to prove that \(x - y \) is an edge in \(\overline{C_G} \) if and only if \(\overline{x - y} \) is an edge in \(\overline{C_{\text{Cyc}(G)}} \), where \(\overline{\ } \) is the natural epimorphism from \(G \) to \(\text{Cyc}(G) \). If \(x - y \) is an edge in \(C_G \), then \((x, y) \) is not cyclic. We have to prove that \((\overline{x}, \overline{y}) \) is not cyclic. Suppose, for a contradiction, that \((\overline{x}, \overline{y}) \) is cyclic. Then \(x = g_1c_1 \) and \(y = g_2c_2 \) for some \(g \in G \), \(c_1, c_2 \in \text{Cyc}(G) \) and integers \(i, j \). Thus

\[
\langle x, y \rangle = \langle g_1c_1, g_2c_2 \rangle \leq \langle g, c_1, c_2 \rangle.
\]

Now since \(\langle c_1, c_2 \rangle = \langle c \rangle \), for some \(c \in \text{Cyc}(G) \), it follows that \(\langle g, c_1, c_2 \rangle \) is cyclic. Therefore \((x, y) \) is cyclic, a contradiction.

Now if \(\overline{x - y} \) is an edge in \(\overline{C_{\text{Cyc}(G)}} \), then \((\overline{x}, \overline{y}) \) is not cyclic; and since \((\overline{x}, \overline{y}) \) is a homomorphic image of \((x, y) \), \((x, y) \) is not cyclic. This completes the proof. \(\blacksquare \)

Lemma 2.2. Let \(G \) be a finite non-cyclic group and let \(x, y \in G \setminus \text{Cyc}(G) \). Then \(d_{\text{Cyc}}(x, y) = 3 \) if and only if \(G = \text{Cyc}(x) \cup \text{Cyc}(y) \). Moreover, \((x, y) \) is cyclic and for all \(t \in \text{Cyc}(x) \setminus \text{Cyc}(y) \) and for all \(s \in \text{Cyc}(y) \setminus \text{Cyc}(x) \), \((t, s) \) is not cyclic.

Proof. The proof is contained in that of [2, Proposition 3.2]. \(\blacksquare \)

Recall that if \(G \) is a non locally cyclic group, then two distinct vertices are adjacent in the cyclic graph \(\overline{C_G} \) if and only if they generate a cyclic group.

Lemma 2.3. Let \(G \) be a non locally cyclic group. Then \(\text{diam}(\overline{C_G}) \neq 1 \). In other words, \(\overline{C_G} \) cannot be isomorphic to a complete graph.

Proof. If \(\text{diam}(\overline{C_G}) = 1 \), then every two elements of \(G \) generates a cyclic group. This is equivalent to \(G \) being locally cyclic, a contradiction. \(\blacksquare \)

Proposition 2.4. (1) If \(G \) is a non locally cyclic group such that either \(\text{Cyc}(G) \neq 1 \) or \(\overline{C_G} \) is connected and \(\text{Cyc}(G) = 1 \), then \(G \) is either a torsion group or a torsion free group.

(2) If \(A \) is an abelian torsion-free non locally cyclic group, then \(\overline{C_A} \) is disconnected.

(3) There are torsion-free simple groups \(H \) such that \(\text{diam}(\overline{C_H}) = \text{diam}(\overline{C_H}) = 2 \).

Proof. (1) If \(\text{Cyc}(G) \neq 1 \), then the proof follows from Lemma 2.3 of [2]. Thus assume that \(\overline{C_G} \) is connected and \(\text{Cyc}(G) = 1 \). If there were elements of infinite order and non-trivial elements of finite order, then connectivity would guarantee some pair of these would be adjacent in \(\overline{C_G} \), which is not possible. This proves (1).

(2) Suppose, for a contradiction, that \(\overline{C_A} \) is connected. Note that any two adjacent vertices \(a, b \) satisfy \(\langle a \rangle \cap \langle b \rangle \neq 1 \). Since \(A \) is torsion-free and \(\overline{C_A} \) is connected, it follows that \(\langle a \rangle \cap \langle b \rangle \neq 1 \) for any two non-trivial elements \(a, b \) of \(A \). Fix a non-trivial element \(a \in A \), then it is easy to see that the map \(f \) defined from \(A \) to the additive group \(\mathbb{Q} \) of rational numbers by \(f(x) = mx/n \), where \(x^n = a^m \), is a group monomorphism, where \(m \) and \(n \) are integers such that \(1 \neq x^m = a^n \in \langle x \rangle \).
Lemma 2.5. Let G be a finite non-cyclic group of prime power order. Then \overline{G} is disconnected.

Proof. Suppose, for a contradiction, that \overline{G} is connected. By Lemma 2.1, we may assume that $\text{Cyc}(G) = 1$. Now we prove that G has only one subgroup of prime order. Suppose that there are two elements a and b of prime order. Since $\text{Cyc}(G)$ is connected, there exists a sequence x_1, \ldots, x_n of elements of $G \setminus \text{Cyc}(G)$ such that

$$\langle a, x_1 \rangle, \langle x_1, x_2 \rangle, \ldots, \langle x_{n-1}, x_n \rangle, \langle x_n, b \rangle \quad (2.1)$$

are all cyclic. Since a cyclic group of p-power order has only one subgroup of order p, and both $\langle a \rangle$ and $\langle b \rangle$ are subgroups of order p of the cyclic groups (1), we have that $\langle a \rangle = \langle b \rangle$. Now let A be the only subgroup of prime order in G, which can be generated by x and let y be any non-trivial element of G. Then $\langle x, y \rangle = \langle y \rangle$. This shows that $x \in \text{Cyc}(G)$, which is impossible. This completes the proof.

Lemma 2.6. Let G be a non locally cyclic group. If $\text{diam}(\overline{G}) = 3$ then \overline{G} is connected and $\text{diam}(\overline{G}) \in \{2, 3\}$.

Proof. Let $x, y \in G \setminus \text{Cyc}(G)$ such that $d_{\overline{G}}(x, y) = 3$. By Lemma 2.2, we have $G = C_x \cup C_y$, where $C_x = \text{Cyc}_G(x)$ and $C_y = \text{Cyc}_G(y)$. Now let a and b be two distinct elements of $G \setminus \text{Cyc}(G)$. If $K = \langle a, b \rangle$ is cyclic, then $d_{\overline{G}}(a, b) = 1$. Suppose that K is non-cyclic. We may assume without loss of generality that $a \in C_x \setminus C_y$ and $b \in C_y \setminus C_x$. (otherwise $d_{\overline{G}}(a, b) = 2$ as either $a - x - b$ or $a - y - b$ is a path of length two in \overline{G}). In this case, $a - x - y - b$ is a path of length 3 in \overline{G}. Now Lemma 2.3 completes the proof.

We have checked by GAP [14], that for each finite non-cyclic group G of order at most 100, the following holds

$$\text{diam}(\overline{G}) = 3 \Leftrightarrow \text{diam}(\overline{G}) = 3.$$

We were unable to prove the equality $\text{diam}(\overline{G}) = 3$ in Lemma 2.6 for all non locally cyclic groups G. So we may pose the following question:

Question 2.7. In Lemma 2.6, for which non locally cyclic group G does the equality $\text{diam}(\overline{G}) = 3$ hold?
The following is an example of a finite non-cyclic group G with $\text{diam}(C_G) = 2$ and $\text{diam}(\overline{C_G}) = 4$. Let $G = C_2 \times F$ be the direct product of a cyclic group of order 2 generated by z say, with a Frobenius group F of order $6 \cdot 7$ (which is not the dihedral group D_{42}). A Sylow 3-subgroup (there are seven of these) is cyclic of order 3, and if P and Q are two distinct ones, then $C_G(P) \cap C_G(Q) = \langle z \rangle$. In particular, if x and y are two non-central elements of G, then x fails to centralize at least 6 Sylow 3-subgroups, and then x and y together fail to centralize at least 5 of these. Thus, the distance $d_{C_G}(x,y)$ in the non-cyclic graph is at most 2. On the other hand, if exactly one of these elements, say x, is central (so $x = z$), then choose a Sylow 3-subgroup P which does not centralize y, and then choose an element g of order 6 in the centralizer $C_G(P)$. Then we have the path $x - g - y$ of length 2 in the non-cyclic graph of G. This establishes $\text{diam}(C_G) = 2$.

In the cyclic graph $\overline{C_G}$, every element has distance at most 2 from the central element z. Certainly, elements of odd order are directly adjacent to z, elements of even order $\neq 2$ are connected to elements of odd order, so have distance ≤ 2 from z, while a non-central involution centralizes some (unique) Sylow 3-subgroup of G so that it too has distance ≤ 2 from z. Hence $\text{diam}(\overline{C_G}) \leq 4$. It remains to find two elements u and v whose distance is exactly 4 in the cyclic graph $\overline{C_G}$.

Choose u and v to be non-central involutions centralizing two distinct Sylow 3-subgroups, say $P = \langle g \rangle$ and $Q = \langle h \rangle$, respectively. Certainly $u - g - z - h - v$ is a path of length 4 in the cyclic graph $\overline{C_G}$, and we argue that there is no shorter path from u to v. Clearly, $u \neq v$ and u, v are not adjacent in the cyclic graph. Moreover, $C_G(u) \cap C_G(v) = \langle z \rangle$ shows that there is no path of length 2 from u to v (as neither $\langle u, z \rangle$ nor $\langle v, z \rangle$ is cyclic). Furthermore, if x is any element adjacent to u, then $\langle x \rangle$ is either P or $P(u)$. Therefore, in any path from u to any other element, say $u - x - \cdots$ we may replace x by an appropriate generator of P. If this path ends at v, then the ending $\cdots y - v$ may be adjusted similarly so that y is a generator of Q. As $\langle x, y \rangle$ is not cyclic, the total length of the path is ≥ 4.

Two other examples are SmallGroup(48,11) and SmallGroup(48,12) in GAP [14]. It is also checked that for all non-cyclic groups G of order at most 100, either C_G is disconnected or $\text{diam}(C_G) \in \{3, 4\}$.

Lemma 2.8. Let G be a non locally cyclic group. Then

1. $\gamma(\overline{C_G}) \geq 2$. The equality holds if and only if $\text{diam}(C_G) = 3$.
2. $\gamma(C_G) = 1$ if and only if $\text{Cyc}(G) = 1$ and there is an element x of order 2 such that $\text{Cyc}_G(x) = \langle x \rangle$.
3. If either $G = E \ast H$ is the free product of a non-trivial elementary abelian 2-group E with an arbitrary group H such that either $|E| > 2$ or $|H| > 1$; or G has an abelian 2'-subgroup A and an element x of order 2 such that $G = A(x)$ and $a^2 = a^{-1}$ for all $a \in A$, then $\gamma(C_G) = 1$.
Since every non-trivial element of $E = \mathbb{Z}$

Each dominating set for elements g^x is contained in a (unique) maximal cyclic subgroup. Replacing each i by an arbitrary non-trivial element of E, we have that $\langle a \rangle$ is cyclic for all $a \in G$ and so $x \in \text{Cyc}(G)$, a contradiction.

Now suppose that $\gamma(G) = 2$. Then there exist two distinct vertices x and y of G such that for every vertex $a \notin \{x, y\}$, either $\langle a, x \rangle$ or $\langle a, y \rangle$ is cyclic. This implies that $G = \text{Cyc}_G(x) \cup \text{Cyc}_G(y)$. Now Lemma 2.2 and [2, Proposition 3.2] complete the proof.

(2) Suppose that C_G has a dominating singleton set $\{x\}$. Since $\langle x, x^{-1} \rangle$ is trivially cyclic, $x = x^{-1}$ and so $x^2 = 1$.

If $t \in \text{Cyc}(G)$ and $t \neq 1$, then $\langle tx, x \rangle$ is cyclic. It follows that $tx = x$ and so $t = 1$. Thus $\text{Cyc}(G) = 1$.

If $c \in \text{Cyc}_G(x)$ and $c \neq x$, then $\langle c, x \rangle$ is cyclic. This implies that $c \in \text{Cyc}(G) = 1$ and so $\text{Cyc}_G(x) = \langle x \rangle$.

For the converse, it is enough to note that for all $a \in G \setminus \{1, x\}$, $\langle a, x \rangle$ is not cyclic. This shows that $\{x\}$ is a dominating set for C_G and so $\gamma(G) = 1$.

(3) Suppose that $G = E \ast H$ is the free product of an elementary abelian 2-group E with an arbitrary group H such that either $|E| > 2$ or $|H| > 1$. Let x be an arbitrary non-trivial element of E. Then the centralizer $C_G(x)$ of x in G is equal to E and since E is elementary abelian, we have that $\text{Cyc}_E(x) = \langle x \rangle$. It follows that $\text{Cyc}_G(x) = \langle x \rangle$. Now by part (2) it is enough to show that $\text{Cyc}(G) = 1$. If $Z(G) = 1$, then obviously $\text{Cyc}(G) = 1$. If $Z(G) \neq 1$, then $|H| = 1$ as $|E| > 2$. Thus $G = E$ and since $|E| > 2$, there are two non-trivial distinct elements a and b in E. Since every non-trivial element of E has order 2, $\text{Cyc}_E(g) = \langle g \rangle$ for all non-trivial elements $g \in E$. Thus

\[\text{Cyc}(G) = \text{Cyc}(E) \leq \langle a \rangle \cap \langle b \rangle = 1, \]

as required.

It is straightforward to see that if G is of second type, then the singleton $\{x\}$ is a dominating set for C_G.

3. Finite Groups Whose Non-Cyclic Graphs Have Small Clique Numbers

In this section we characterize groups whose non-cyclic graphs have clique numbers at most 4. If $\{x_1, x_2, \ldots, x_n\}$ is a maximal clique for the finite group G then each x_i is contained in a (unique) maximal cyclic subgroup. Replacing each x_i by a generator of this maximal cyclic subgroup does no harm, and the resulting collection of cyclic subgroups $\langle x_1 \rangle, \ldots, \langle x_n \rangle$ is a complete list of all the maximal cyclic subgroups, by [2, Theorem 4.7].

Lemma 3.1. Let G be a non locally cyclic group. Then $\omega(C_G) \geq 3$.
Proof. Since G is not locally cyclic, there exists two elements x and y such that $\langle x, y \rangle$ is not cyclic. Thus $\{x, y, xy\}$ is a clique in C_G. This completes the proof. \hfill \Box

Lemma 3.2. Let G be a non locally cyclic group whose non-cyclic graph has no infinite clique. Then $\omega(\Gamma_G)$ is finite and $\omega(C_G) = \omega(C_{\omega(C_G)})$.

Proof. It follows from [2, Theorem 4.2 and Lemma 2.3-(2)]. \hfill \Box

Thus by [2, Lemma 3.2 and Lemma 2.3-(2)], to characterize groups G with finite fixed $\omega(C_G)$, it is enough to characterize finite ones with trivial cyclicizers.

We use the following result in the proof of Theorems 3.12 and 5.5.

Lemma 3.3. Let G be a non locally cyclic group such that $\omega(C_G)$ is finite. If N is a normal subgroup of G such that G/N is not locally cyclic, then $\omega(C_{\bar{G}}) \leq \omega(C_G)$, with equality if and only if $N \leq \text{Cyc}(G)$.

Proof. Let $\omega(C_G) = n$ and $\bar{G} = G/N$. If $L/N = \text{Cyc}(\bar{G})$, then $\text{Cyc}(G)N \leq L$ and so by Lemma 3.2

$$\omega(C_{\bar{G}}) = \omega(C_{\bar{G}}^L) \leq \omega(C_{\bar{G}}^{L/N}) \leq \omega(C_G) = \omega(C_{\omega(C_G)})$$

Since by [2, Theorem 4.2] $G/\text{Cyc}(G)$ is finite, without loss of generality, we may assume that G is finite.

Clearly $\omega(C_{G/N}) \leq \omega(C_G)$. Now suppose that $\omega(C_{G/N}) = \omega(C_G)$. Then there exist elements $y_1, \ldots, y_n \in G$ such that $M = \{y_iN \mid i = 1, \ldots, n\}$ is a clique of C_G. Choose now a maximal cyclic subgroup C_i of G containing y_i (C_i is in fact uniquely determined by y_i). There is no harm in replacing each y_i by a generator x_i of C_i. Now it follows from [2, Theorem 4.7] that C_1, \ldots, C_n are all the maximal cyclic subgroups of G. Consider an arbitrary element $a \in N$. Then

$$\{x_1, x_2, \ldots, x_n, ax_1\}$$

is not a clique of C_G. Since M is a clique for C_G, it follows that

$$\langle x_1, ax_1 \rangle = \langle a, x_1 \rangle$$

is cyclic for all $a \in N$.

This says that $a \in \langle a, x_1 \rangle = C_1 = \langle x_1 \rangle$ for all $a \in N$. But x_1 may be replaced by any of the x_i, and we conclude that $N \leq \bigcap_{i=1}^n C_i = \text{Cyc}(G)$. This completes the proof. \hfill \Box

Throughout for a prime number p we denote by $\nu_p(G)$ the number of subgroups of order p in a group G. It is well-known that $\nu_p(G) \equiv 1 \mod p$ for a finite group G, whenever p divides $|G|$.

Lemma 3.4. Let G be a finite group with trivial cyclicizer. Then for any prime divisor p of $|G|$, $\nu_p(G) \leq \omega(C_G)$. If p_1, \ldots, p_k are distinct prime numbers such that G has no element of order p_ip_j for all distinct i, j, then $\sum_{i=1}^k \nu_{p_i}(G) \leq \omega(C_G)$.
Proof. Let \(C_1, \ldots, C_{\nu_p(G)} \) be all the subgroups of order \(p \) of \(G \). If \(c_i \) is a generator of \(C_i \), then \(\{ c_1, \ldots, c_{\nu_p(G)} \} \) is a clique in \(C_G \). Thus \(\nu_p(G) \leq \omega(C_G) \), as required. To prove the second part, for every \(i \in \{ 1, \ldots, k \} \) and every subgroup of order \(p_i \), take a generator of the subgroup, then the set consisting of these generators is a clique in \(C_G \). This completes the proof. \(\square \)

Lemma 3.5. Let \(G \) be a finite group \(G \) with trivial cyclicizer. Let \(p \) be a prime number such that \(p^{k-1} < \omega(C_G) \leq p^k \), for some \(k \in \mathbb{N} \).

1. For every \(p \)-element \(x \) of \(G \), we have \(x^{p^{k-1}} \in Z(G) \).
2. If \(k = 1 \), then \(G \) has no non-trivial \(p \)-element.
3. No Sylow \(p \)-subgroup of \(G \) is cyclic of order greater than \(p^{k-1} \).

Proof. (1) Let \(n = \omega(C_G) \) and suppose that \(x^{p^{k-1}} \neq 1 \). The goal is to show that every \(y \in G \) centralizes \(x^{p^{k-1}} \). This is obvious, if \(y \in \langle x \rangle \) so assume \(y \notin G - \langle x \rangle \). Then with \(X = \{ x \} \cup \langle x \rangle y \), it is clear that \(|X| \geq n + 1 \). Next, as some two element subset of \(X \) generates a cyclic group, there are only two cases to consider. If one of these two elements is \(x \), then the cyclic subgroup in question is \(\langle x, x^i y \rangle = \langle x, y \rangle \), so clearly \(y \in C_G(x) \subseteq C_G(x^{p^{k-1}}) \). If on the other hand the elements are \(x^j y \) and \(x^{j'} y \), then since

\[
\langle x^j y, x^{j'} y \rangle = \langle x^j y (x^{j'} y)^{-1}, x^j y \rangle = \langle x^{-1}, x^j y \rangle,
\]

we conclude that \(x^j y \in C_G(x^{i-j}) \subseteq C_G(x^{p^{k-1}}) \), so clearly \(y \) belongs to this last set as well.

(2) In the proof of part (1), put \(k = 1 \). Since \(i - j < p \), \(\text{gcd}(i - j, p) = 1 \) and so \(\langle x, y \rangle \) is cyclic for all \(y \in G \). Thus \(x \in \text{Cyc}(G) = 1 \). This completes the proof of part (2).

(3) Suppose, for a contradiction, that \(G \) has a cyclic Sylow \(p \)-subgroup of order greater than \(p^{k-1} \). Then by part (1), \(x^{p^{k-1}} \in Z(G) \) for every \(p \)-element of \(x \) of \(G \). Since Sylow \(p \)-subgroups of \(G \) are cyclic, it follows that \(\langle x^{p^{k-1}}, y \rangle \) is cyclic for all \(y \in G \). This implies that \(x^{p^{k-1}} \in \text{Cyc}(G) = 1 \) for all \(p \)-elements of \(x \) in \(G \), which gives a contradiction. \(\square \)

For a group \(G \), we denote the non-commuting graph of \(G \) by \(A_G \). This is the graph whose vertex set is \(G \setminus Z(G) \) and two vertices \(x \) and \(y \) are adjacent if \(xy \neq yx \).

This graph was studied in [1] and [9].

Lemma 3.6. Let \(G \) be an abelian group. Then \(\omega(C_G) = 3 \) if and only if \(G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus T \), where \(T \cong \text{Cyc}(G) \) is a locally cyclic torsion group in which all elements have odd order.

Proof. Suppose that \(\omega(C_G) = 3 \) and \(\hat{G} = G/\text{Cyc}(G) \). Since \(\text{Cyc}(G) = 1 \), then by Lemma 3.5, \(\hat{G} \) is a 2-group. Thus \(\hat{G} \cong \mathbb{Z}_{2^n_1} \oplus \cdots \oplus \mathbb{Z}_{2^n_k} \), and as \(\omega(C_G) = 3 \), we
have \(k = 2 \) and \(\alpha_1 = \alpha_2 = 1 \). Therefore \(G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \). Now it follows from parts (4) and (5) of [2, Lemma 2.3] that \(G \) is torsion. If \(\text{Cyc}(G) \) contains an element of order 2, then \(G \) contains a subgroup isomorphic to either \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) or \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \), which is not possible. Thus all elements of \(\text{Cyc}(G) \) have odd order and so \(\text{Cyc}(G) \) is the 2'-primary component of \(G \) and so \(G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \text{Cyc}(G) \).

The converse is clear.

Theorem 3.7. Let \(G \) be a non locally cyclic group. Then \(\omega(C_G) = 3 \) if and only if \(G/\text{Cyc}(G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \).

Proof. Suppose that \(\omega(C_G) = 3 \). By Lemma 3.2, we may assume that \(\text{Cyc}(G) = 1 \). Also it follows from Lemma 3.5, that \(G \) is a 2-group, and by Lemma 3.6, we may assume that \(G \) is a non-abelian group. Now since \(\omega(C_G) \geq \omega(A_G) \), we have \(\omega(A_G) = 3 \). Thus by a well-known result (see e.g. [4, Lemma 2.4-(3)] and [7, Theorem 2]), we have \(G/Z(G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \). Since \(G \) is nilpotent, \(Z(G) \neq \text{Cyc}(G) = 1 \). Then there exists an element \(a \in G \) such that \(H = \langle a, Z(G) \rangle \) is not cyclic. Now since \(H \) is abelian and since \(\omega(C_H) \leq \omega(C_G) = 3 \), it follows from Lemma 3.6 that \(H \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2 \). Thus \(Z(G) \cong \mathbb{Z}_2 \) or \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \). If \(Z(G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \), then taking \(a' \in G \setminus Z(G) \), again \(\langle a', Z(G) \rangle \) is abelian, and by a similar argument, it is isomorphic to \(\mathbb{Z}_2 \oplus \mathbb{Z}_2 \), which is a contradiction. Thus \(Z(G) \cong \mathbb{Z}_2 \), and so \(|G| = 8 \). Therefore \(G \cong D_8 \) or \(Q_8 \), but \(\text{Cyc}(Q_8) \neq 1 \). Thus \(G \cong D_8 \), another contradiction, as \(\omega(C_{D_8}) = 5 \); since if \(D_8 = \langle a, b | a^4 = b^2 = 1, bab = a^{-1} \rangle \), then \(\langle a, b, ab, a^2b, a^3b \rangle \) is a clique in \(C_{D_8} \).

The converse is clear.

Lemma 3.8. Let \(G \) be a group of size \(p^n \) and exponent \(p \), where \(p \) is a prime number and \(n > 1 \) is an integer. Then \(\omega(C_G) = \frac{p^n - 1}{p - 1} \).

Proof. For \(x, y \in G \), \(\langle x, y \rangle \) is not cyclic if and only if \(\langle x \rangle \neq \langle y \rangle \). Thus \(\omega(C_G) \) is equal to the number of subgroups of \(G \) of order \(p \). This completes the proof.

Lemma 3.9. Let \(G \) and \(H \) be two finite non-cyclic groups such that \(\gcd(|G|, |H|) = 1 \). If \(\omega(C_G) = n \) and \(\omega(C_H) = m \) are finite, then \(\omega(C_{G \times H}) \geq nm \).

Proof. Let \(\{g_1, \ldots, g_n\} \) and \(\{h_1, \ldots, h_m\} \) be two clique sets in \(G \) and \(H \), respectively. Now it is easy to see that the set

\[
\{(g_i, h_j) | i \in \{1, \ldots, n\}, j \in \{1, \ldots, m\}\}
\]

is a clique in \(C_{G \times H} \). This completes the proof.

Lemma 3.10. Let \(G \) be an abelian group such that \(\omega(C_G) = 4 \). Then \(G/\text{Cyc}(G) \cong \mathbb{Z}_4 \oplus \mathbb{Z}_4 \).

Proof. By [2, Lemmas 3.2 and 3.5 and Lemma 2.3-(2)], \(H = G/\text{Cyc}(G) \) is an abelian \(\{2, 3\} \)-group with Sylow \(p \)-subgroups of exponent \(p \) and \(\omega(C_H) = 4 \) and...
\text{Cyc}(H) = 1. \text{ Thus}
\[H \cong \mathbb{Z}_2 \oplus \cdots \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \cdots \oplus \mathbb{Z}_3. \]

Since \(\omega(C_H) = 4 \) and \(\text{Cyc}(H) = 1 \), it follows from Lemmas 3.8 and 3.9 that \(k = 0 \) and \(\ell = 2 \), that is, \(H \cong \mathbb{Z}_3 \oplus \mathbb{Z}_3 \), as required. \hfill \Box

\textbf{Lemma 3.11.} \textit{There is no non-cyclic group \(G \) of order 27 with \(\omega(C_G) = 4 \).}

\textbf{Proof.} Suppose, for a contradiction, that \(G \) is a group of order 27 with \(\omega(C_G) = 4 \). It follows from Lemmas 3.10 and 3.8 that \(G \) is a non-abelian group of exponent 9. Therefore
\[G \cong \langle c, d \mid c^9 = d^3 = 1, d^{-1}cd = c^4 \rangle. \]
Now the set \(\{c, d, cd, c^{-1}d, cd^{-1}\} \) is a clique. This completes the proof. \hfill \Box

\textbf{Theorem 3.12.} \textit{Let \(G \) be a non locally cyclic group. Then \(\omega(C_G) = 4 \) if and only if \(G/\text{Cyc}(G) \cong \mathbb{Z}_3 \oplus \mathbb{Z}_3 \) or \(S_3 \).}

\textbf{Proof.} Suppose that \(\omega(C_G) = 4 \). Then by Lemma 3.2 we may assume that \(\text{Cyc}(G) = 1 \). Also it follows from Lemma 3.5 that \(G \) is a \{2,3\}-group. By Lemma 3.10, we may assume that \(G \) is non-abelian. Now since \(4 = \omega(C_G) = \omega(A_G) \), we have \(\omega(A_G) = 3 \) or \(4 \).

If \(\omega(A_G) = 3 \), then \(G/Z(G) \cong \mathbb{Z}_3 \oplus \mathbb{Z}_2 \). In this case by an argument similar to the proof of Theorem 3.7 we obtain a contradiction. So \(\omega(A_G) = 4 \), and by [4, Lemma 2.4-(4)] and [7, Theorem 5], we have \(G/Z(G) \cong \mathbb{Z}_3 \oplus \mathbb{Z}_3 \) or \(S_3 \). By Lemma 3.11, Sylow 3-subgroups of \(G \) are of order 3 or 9. By Lemma 3.3, \(Z(G) \) is cyclic. Therefore \(Z(G) \cong \mathbb{Z}_2 \) or \(\mathbb{Z}_3 \).

(1) Let \(G/Z(G) \cong \mathbb{Z}_3 \oplus \mathbb{Z}_3 \). Then \(\text{gcd}(|G/Z(G)|, |Z(G)|) = 1 \), as Sylow subgroups of \(G \) are of order at most 9. Thus \(Z(G) = \text{Cyc}(G) = 1 \) and so \(G \) is abelian, a contradiction.

(2) Let \(G/Z(G) \cong S_3 \).

(I) If \(Z(G) \cong \mathbb{Z}_3 \), then \(|G| = 18 \), and since \(G \) is not abelian \(G \cong D_{18}, \langle c, d, e \mid c^3 = d^3 = e^2 = 1, cd = dc, c^e = c^{-1}, d^c = d^{-1} \rangle \), or \(\mathbb{Z}_3 \times S_3 \). The first two have trivial centers, so \(G \cong \mathbb{Z}_3 \times S_3 \). But if \(\mathbb{Z}_3 = \langle z \rangle \) and \(S_3 = \langle a, b \mid a^3 = b^2 = 1, a^b = a^{-1} \rangle \), then \(\{a, b, ab, a^2b, za\} \) is a clique, which is a contradiction.

(II) Let \(Z(G) \cong \mathbb{Z}_2 \). Then \(|G| = 12 \), and since \(G \) is non-abelian \(G \cong A_4, D_{12} \) or \(\langle a, b \mid a^2 = 1, b^2 = a^3, bab^{-1} = a^{-1} \rangle \). But \(G \not\cong A_4 \), since \(Z(A_4) = 1 \). If \(G \cong D_{12} = \langle c, d \mid c^6 = 1 = d^2, dcd^{-1} = c^{-1} \rangle \), then \(\{c, d, cd, c^2d, c^3d\} \) is a clique, a contradiction. If \(G \cong \langle a, b \mid a^6 = 1, b^2 = a^3, bab^{-1} = a^{-1} \rangle \), then \(\{a, b, ab, a^{-1}b, a^2b\} \) is a clique, a contradiction.

This completes the proof. \hfill \Box
4. Planar and Hamiltonian Non-Cyclic Graphs

We were unable to decide whether the non-cyclic graph of a finite group is Hamiltonian or not. On the other hand, since the non-cyclic graph of a finite group is so rich in edges, it is hard to believe it is not Hamiltonian.

The following result reduces the verification of being Hamiltonian of the non-cyclic graph of a finite group G to that of the graph $C_G/C_G(G)$.

Lemma 4.1. Let G be a finite non-cyclic group such that $C_G/C_G(G)$ is Hamiltonian. Then C_G is also Hamiltonian.

Proof. By hypothesis there exists a cycle

$$a_1 - a_2 - \cdots - a_n = a_1$$

in C_G/G, such that

$$\frac{G}{C_G(G)} \backslash \frac{C_G}{C_G(G)} = \{a_1, a_2, \ldots, a_n\}.$$

Let $C_G(G) = \{c_1, \ldots, c_k\}$. By \ast, $a_i c_j$ is adjacent to $a_i c_{j+1}$ in C_G for all $i \in \{1, \ldots, n\}$ and all $j, \ell \in \{1, \ldots, k\}$, where indices of a's are computed modulo n. Thus

$$a_1 c_1 - \cdots - a_n c_1 - a_1 c_2 - \cdots - a_n c_2 - \cdots - a_1 c_k - \cdots - a_n c_k - a_1 c_1$$

is a Hamilton cycle in C_G. This completes the proof.

In the following result we give a large family of finite groups with Hamiltonian non-cyclic graphs.

Proposition 4.2. Let G be a finite non-cyclic group such that

$$|G| + |C_G(G)| > 2|C_G(x)|$$

for all $x \in Z(G) \setminus C_G(G)$. Then C_G is Hamiltonian. In particular, C_G is Hamiltonian whenever $Z(G) = C_G(G)$.

Proof. First note that the degree of any vertex x in C_G is equal to $|G\setminus C_G(x)|$. We now prove that $|G\setminus C_G(x)| > \frac{|G| - |C_G(G)|}{2}$ for all $x \in G\setminus C_G(G)$. Suppose, for a contradiction, that $|G\setminus C_G(x)| \leq \frac{|G| - |C_G(G)|}{2}$ for some $x \in G\setminus C_G(G)$. It follows that

$$2|C_G(x)| \geq |G| + |C_G(G)|.$$

It now follows from \ast that $2|C_G(x)| \geq |G| + |C_G(G)|$. Since $|C_G(x)|$ divides $|G|$, we have $|G| = |C_G(x)|$ and so $x \in Z(G)$. Now \ast contradicts our hypothesis, as x belongs to $Z(G)\setminus C_G(G)$. Therefore $d(x) > (|G| - |C_G(G)|)/2$ for all vertices x of C_G. Hence by Dirac’s theorem [5, p. 54], C_G is Hamiltonian.
The inequality stated in Proposition 4.2 does not hold in general. For example if $G = C_4 \times S_3$, and $x \in C_4$ is an element of order 3, then it is easy to see that $|Cyc_G(x)| = 24$ and as $C cyc(G) = 1$, we see that the inequality does not hold.

Proposition 4.3. Let G be a non locally cyclic group. Then C_G is planar if and only if G is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$, S_3 or Q_8.

Proof. It is easy to see that the non-cyclic graphs of the groups stated in the lemma are all planar. Now suppose that C_G is planar. Since the complete graph of order 5 is not planar, we have $\omega(\Gamma_G) < 5$. Thus $G/Cyc(G)$ is isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_p$ or S_3, where $p \in \{2, 3\}$, by Theorems 3.7 and 3.12. Now we prove that $|Cyc(G)| \leq 2$.

Suppose, for a contradiction, that $|Cyc(G)| > 2$ and consider a finite subset C of Cyc(G) with $|C| = 3$. Let x and y be two adjacent vertices in C_G. Put $T = Cx \cup Cy$. Now the induced subgraph C_T of C_G by T is a planar graph. On the other hand, C_T is isomorphic to the bipartite graph $K_{3,3}$, a contradiction, since $K_{3,3}$ is not planar. If $G/Cyc(G) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$, then $G \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$ or Q_8. If $G/Cyc(G) \cong \mathbb{Z}_3 \oplus \mathbb{Z}_3$, then there are two adjacent vertices x and y such that the orders of xCyc(G) and yCyc(G) are both 3. Let $I = \{x, x^{-1}, y\}$ and $J = \{xy, x^{-1}y, (xy)^{-1}\}$. In the non-cyclic graph C_G every vertex of I is adjacent to every vertex of J. Therefore C_G contains a copy of $K_{3,3}$, a contradiction.

If $G/Cyc(G) \cong S_3$, then there are vertices a and b such that $a \neq a^{-1}$ and both a and a^{-1} are adjacent to each vertex in $\{b, ab, a^2b\}$. Now suppose, for a contradiction, that Cyc(G) contains a non-trivial element c. Then $\{a, a^{-1}, ac\}$ and $\{b, ab, a^2b\}$ are the parts of a subgraph of C_G isomorphic to $K_{3,3}$, a contradiction. Therefore, in this case, Cyc(G) = 1 and so $G \cong S_3$. This completes the proof.

5. A Solvability Criterion and New Characterizations for the Symmetric and Alternating Groups of Degree 5

We need the following result in the proof of Theorem 5.3 below.

Proposition 5.1 [3, Proposition 2.6]. Let p be a prime number, n a positive integer and r and q be two odd prime numbers dividing respectively $p^n + 1$ and $p^n - 1$. Then the number of Sylow r-subgroups (respectively, q-subgroups) of $L_2(p^n)$ is $p^n(p^n - 1)/2$ (respectively, $p^n(p^n + 1)/2$). Also any two distinct Sylow r-subgroups or q-subgroups have trivial intersection.

Proof. The proof follows from Theorems 8.3 and 8.4 in [8, Chap. II]. For a complete proof see the proof of [3, Proposition 2.6].

Lemma 5.2. Let G be one of the following groups:

- $L_2(2^p)$, $p = 4$ or a prime; $L_2(3^p)$, $L_2(5^p)$, p a prime; $L_2(p)$, p a prime ≥ 7; $L_3(3), L_3(5)$; PSU(3, 4) (the projective special unitary group of degree 3 over the finite field of order 4^2) or Sz(2^p), p an odd prime. Then $\omega(C_G) > 31$.

Proof. For every group listed above we find a set S of prime numbers p for which Lemma 3.4 is applicable.

For every prime number p and every integer $n > 0$, we have that the number of Sylow p-subgroups of $L_2(p^n)$ which are elementary abelian, is $p^n + 1$ and any two distinct Sylow p-subgroups have trivial intersection (see [8, Chap. II Theorem 8.2(b), (c)]). It follows that $\nu_p(L_2(p^n)) = (p^n + 1)(p^n - 1)/(p - 1)$. Thus among the projective special linear groups, we only need to investigate the following groups: $L_3(3)$, $L_3(5)$, $L_2(p)$ for $p \in \{7, 11, 13, 17, 19, 23, 29\}$. Now if in Proposition 5.1, we take $q = 3$ for $L_2(13)$ and $L_2(19)$; and $r = 3$ for $L_2(11)$, $L_2(17)$, $L_2(23)$ and $L_2(29)$; Then by Lemma 3.4 we are done in these cases. Therefore we must consider the groups $L_2(7)$, $L_3(3)$, $L_3(5)$, $PSU(3, 4)$ or $Sz(2^p)$, p an odd prime.

If $G = L_2(7)$, then $|G| = 2^3 \times 3 \times 7$ and G has no element of order 3×7. Now it follows from Lemma 3.4, that $\nu_3(G) + \nu_7(G) \leq w(C_G)$. Now by Proposition 5.1, we have $\nu_3(G) = 28$ and $\nu_7(G) = 8$ and so $w(C_G) \geq 36$. If $G = L_3(3)$, then $|G| = 2^4 \times 3^3 \times 13$ and G has no element of order 3×13. Thus $\nu_3(G) = 1 + 3k$ and $\nu_{13}(G) = 1 + 3\ell$, for some $k > 0$ and $\ell > 0$. Since 14 does not divide $|G|$ and no non-abelian simple group contains a subgroup of index less than 5, $\nu_{13}(G) \geq 27$ and $\nu_3(G) \geq 7$. Now it follows from Lemma 3.4 that $w(C_G) \geq 34$. If $G = L_3(5)$, then $|G| = 2^5 \times 3 \times 5^2 \times 31$. Thus $\nu_{31}(G) = 1 + 31k$, for some $k > 0$ and so $\nu_{31}(G) > 31$. If $G = PSU(3, 4)$, then $|G| = 2^6 \times 3 \times 5^2 \times 13$ (see [8, Theorem 10.12(d) of Chap. II] and note that $PSU(3, 4)$ is the projective special unitary group of degree 3 over the finite field of order 4^2). Therefore $\nu_{31}(G) = 1 + 3k$ for some $k > 0$ and since 14 does not divide $|L|$, $\nu_{31}(L) > 26$. If $G = Sz(2^p)$ (p an odd prime), then it follows from Theorem 3.10 (and its proof) of [8, Chap. XI] that $\nu_2(G) \geq 2^{2p} + 1 \geq 65$. This completes the proof.

Theorem 5.3. Let G be a non locally cyclic group.

1. If $w(C_G) = 31$, then G is simple if and only if $G \cong A_5$.
2. If $w(C_G) \leq 30$, then G is solvable.

Proof. (1) It follows from [2, Theorem 4.2] that $G/\text{Cyc}(G)$ is finite. Thus, if G is simple, it is finite. Now suppose, for a contradiction, that there exists a non-cyclic finite simple group K with $w(C_K) = 31$ which is not isomorphic to A_5. Let T be such a group of least order. Thus every proper non-abelian simple section of K is isomorphic to A_5. Therefore by [6, Proposition 3] T is isomorphic to one of the groups in the statement of Lemma 5.2, which is impossible. This implies that $G \cong A_5$.

Now we prove that $w(C_{A_5}) = 31$. Note that the order of an element of A_5 is 2, 3 or 5; A_5 has five Sylow 2-subgroups, ten Sylow 3-subgroups and six Sylow 5-subgroups; and any two distinct Sylow subgroups has trivial intersection. Now consider the set of all non-trivial 2-elements of A_5 and select one group generator from each Sylow p-subgroup for $p \in \{3, 5\}$. Then the union \mathcal{C} of these sets is of size 31 and every two distinct element of \mathcal{C} generate a non-cyclic subgroup. On the
other hand, since A_5 is the union of its Sylow subgroups, it is easy to show that every clique set of C_{A_5} is of size at most 31. This completes the proof of (1).

(2) It follows from [2, Theorem 4.2] that $G/\text{Cyc}(G)$ is finite and by Lemma 3.2, we may assume that G is finite. Let K be a counter-example of the least order. Thus every proper subgroup of K is solvable and G is a non-abelian simple group. That is to say, K is a minimal simple group. Thus according to Thompson’s classification of the minimal simple groups in [15], K is isomorphic to one of the following: $L_2(p)$ for some prime $p \geq 5$, $L_2(2p)$ or $L_2(3p)$ for some prime $p \geq 3$, $Sz(2p)$ for some prime $p \geq 3$, or $L_3(3)$.

By Lemma 5.1 and part (1) we have that $\omega(C_K) \geq 31$ and this contradicts the hypothesis. Hence G is solvable.

\begin{lemma}
Let G be either A_5 or S_5. Then $\omega(C_G) = 31$. Moreover, every non-trivial element of G is contained in a maximum clique of C_G.
\end{lemma}

\begin{proof}
Clearly $\omega(C_{S_5}) \geq w(C_{A_5})$. Let C be the clique found in Theorem 5.3 for C_{A_5}. It is easy to see (e.g. by GAP [14]) that

$$G = \bigcup_{x \in C} \text{Cyc}_G(x)$$

and $\text{Cyc}_G(x) = \text{Cyc}_G(a)$ for all non-trivial $a \in \text{Cyc}_G(x)$. (*)

Thus G is the union of 31 cyclic subgroups and so $\omega(C_{S_5}) \leq 31$. It follows that $\omega(C_G) = 31$. The second part follows easily from (*). This completes the proof.
\end{proof}

\begin{theorem}
Let G be a non-solvable group. Then $\omega(C_G) = 31$ if and only if $G/\text{Cyc}(G) \cong A_5$ or S_5.
\end{theorem}

\begin{proof}
If $G/\text{Cyc}(G) \cong A_5$ or S_5, then it follows from Lemmas 3.2 and 5.4 that $\omega(C_G) = 31$.

Suppose that $\omega(C_G) = 31$. By [2, Theorem 4.2] $G/\text{Cyc}(G)$ is finite. Thus we may assume without loss of generality that G is finite and $\text{Cyc}(G) = 1$ and so we have to prove $G \cong A_5$ or S_5.

Let S be the largest normal solvable subgroup of G (here, for the existence of S we use the finiteness of G). Then $\tilde{G} = G/S$ has no non-trivial abelian normal subgroup. Let R be the product of all minimal normal non-abelian subgroups of \tilde{G}. It follows from [3, Lemma 2.1] and Theorem 5.3 that $\tilde{R} \cong A_5$. Since $C_{\tilde{G}}(R) = 1$, we have that \tilde{G} is isomorphic to a subgroup of S_5. It follows that $\tilde{G} \cong A_5$ or S_5. Now it follows from Lemmas 3.3 and 5.4, that $S \leq \text{Cyc}(G) = 1$. This completes the proof.
\end{proof}

We remark here that there are solvable groups G for which $\omega(C_G) = 31$; for example, by Lemma 3.8, we may take G to be either the elementary abelian 2-group of rank 5 or the elementary abelian 5-group of rank 3.

We end the paper with the answer of following question posed in [2].
Question 5.6 [2, Question 2.4]. Let G be a torsion free group such that $\text{Cyc}(G)$ is non-trivial. Is it true that G is locally cyclic?

In [12, Theorem 31.4] Ol’shanskii has constructed a non-abelian torsion-free group G all of whose proper subgroups are cyclic and it is central extension of an infinite cyclic group Z by an infinite group of bounded exponent. Since the group G is 2-generated, it is not locally cyclic. Also $Z \leq \text{Cyc}(G)$, for if $z \in Z$ and $a \in G$, then $\langle z, a \rangle$ is abelian, and as G is not abelian, $\langle z, a \rangle \neq G$. Thus $\langle z, a \rangle$ is cyclic. Hence the answer of [2, Question 2.4] is negative.

Acknowledgment

This research was in part supported by Isfahan University Grant No. 851120 and its Center of Excellence for Mathematics. The research of the first author was in part supported by a grant from IPM (No. 87200118). The authors are indebted to the referee for his/her careful reading and invaluable comments.

References