This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/authorsrights
Cospectrality of graphs

Alireza Abdollahi a,b,*, Mohammad Reza Oboudi a,b

a Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Article history:
Received 17 October 2013
Accepted 15 February 2014
Available online 2 April 2014
Submitted by R. Brualdi

MSC:
05C50
05C31

Keywords:
Spectra of graphs
Measures on spectra of graphs
Adjacency matrix of a graph

Richard Brualdi proposed in Stevanivić (2007) [6] the following problem:
(Problem AWGS.4) Let G_n and G'_n be two nonisomorphic graphs on n vertices with spectra

$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ and $\lambda'_1 \geq \lambda'_2 \geq \cdots \geq \lambda'_n$,

respectively. Define the distance between the spectra of G_n and G'_n as

$\lambda(G_n, G'_n) = \sum_{i=1}^{n} (\lambda_i - \lambda'_i)^2$ (or use $\sum_{i=1}^{n} |\lambda_i - \lambda'_i|$).

Define the cospectrality of G_n by

$cs(G_n) = \min \{ \lambda(G_n, G'_n) : G'_n \text{ not isomorphic to } G_n \}$.

Let

$cs_n = \max \{ cs(G_n) : G_n \text{ a graph on } n \text{ vertices} \}$.

Problem A. Investigate $cs(G_n)$ for special classes of graphs.

Problem B. Find a good upper bound on cs_n.

In this paper we study **Problem A** and determine the cospectrality of certain graphs by the Euclidian distance.

* Corresponding author.
E-mail addresses: a.abdollahi@math.ui.ac.ir (A. Abdollahi), mr.oboudi@sci.ui.ac.ir (M.R. Oboudi).

http://dx.doi.org/10.1016/j.laa.2014.02.052
0024-3795/© 2014 Elsevier Inc. All rights reserved.
Let K_n denote the complete graph on n vertices, nK_1 denote the null graph on n vertices and $K_2 + (n - 2)K_1$ denote the disjoint union of the K_2 with $n - 2$ isolated vertices, where $n \geq 2$. In this paper we find $cs(K_n)$, $cs(nK_1)$, $cs(K_2 + (n - 2)K_1)$ ($n \geq 2$) and $cs(K_{n,n})$.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper all graphs are simple, that is finite and undirected without loops and multiple edges. By the spectrum of a graph G, we mean the multiset of eigenvalues of adjacency matrix of G.

Richard Brualdi proposed in [6] the following problem:

(Problem AWGS.4) Let G_n and G'_n be two nonisomorphic graphs on n vertices with spectra

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \quad \text{and} \quad \lambda'_1 \geq \lambda'_2 \geq \cdots \geq \lambda'_n,$$

respectively. Define the distance between the spectra of G_n and G'_n as

$$\lambda(G_n, G'_n) = \sum_{i=1}^{n} (\lambda_i - \lambda'_i)^2 \quad \left(\text{or use} \sum_{i=1}^{n} |\lambda_i - \lambda'_i| \right).$$

Define the cospectrality of G_n by

$$cs(G_n) = \min \{ \lambda(G_n, G'_n): G'_n \text{ not isomorphic to } G_n \}.$$

Thus $cs(G_n) = 0$ if and only if G_n has a cospectral mate. Let

$$cs_n = \max \{ cs(G_n): G_n \text{ a graph on } n \text{ vertices} \}.$$

This function measures how far apart the spectrum of a graph with n vertices can be from the spectrum of any other graph with n vertices.

Problem A. Investigate $cs(G_n)$ for special classes of graphs.

Problem B. Find a good upper bound on cs_n.

In this paper we study Problem A and determine the cospectrality of certain graphs by the Euclidian distance, that is

$$\lambda(G_n, G'_n) = \sum_{i=1}^{n} (\lambda_i - \lambda'_i)^2.$$
For a graph G, $V(G)$ and $E(G)$ denote the vertex set and edge set of G, respectively; \overline{G} denotes the complement of G and $A(G)$ denotes the adjacency matrix of G. For two graphs G and H with disjoint vertex sets, $G + H$ denotes the graph with the vertex set $V(G) \cup V(H)$ and the edge set $E(G) \cup E(H)$, i.e. the disjoint union of two graphs G and H. The complete product (join) $G \ast H$ of graphs G and H is the graph obtained from $G + H$ by joining every vertex of G with every vertex of H. In particular, nG denotes $G + \cdots + G$ and $\nabla_n G$ denotes $G \nabla G \nabla \cdots \nabla G$.

We denote by $\text{Spec}(G)$ the multiset of the eigenvalues of the graph G.

For positive integers n_1, \ldots, n_ℓ, K_{n_1, \ldots, n_ℓ} denotes the complete multipartite graph with ℓ parts of sizes n_1, \ldots, n_ℓ. Let K_n denote the complete graph on n vertices, $nK_1 = \overline{K}_n$ denote the null graph on n vertices and P_n denote the path with n vertices. By the previous notation, for any integer $n \geq 2$, $K_2 + (n-2)K_1$ denotes the disjoint union of the K_2 with $n-2$ isolated vertices. In this paper we find $\text{cs}(K_n)$, $\text{cs}(nK_1)$, $\text{cs}(K_2 + (n-2)K_1)$ ($n \geq 2$) and $\text{cs}(K_{n,n})$. In particular, we find that there exists a unique graph G_H such that $\lambda(H, G_H) = \text{cs}(H)$ if $H \in \{K_n, nK_1, K_2 + (n-2)K_1, K_{n,n}\}$. The main results of our paper are the following:

Theorem 1.1. For every integer $n \geq 2$, $\text{cs}(nK_1) = 2$. In particular, $\lambda(nK_1, G) = \text{cs}(nK_1)$ for some graph G if and only if $G \cong K_2 + (n-2)K_1$.

Theorem 1.2. For every integer $n \geq 3$, $\text{cs}(K_2 + (n-2)K_1) = 2(\sqrt{2} - 1)^2$. Also, $\text{cs}(K_2) = \lambda(K_2, 2K_1) = 2$. In particular, $\lambda(K_2 + (n-2)K_1, G) = \text{cs}(K_2 + (n-2)K_1)$ for some graph G if and only if $G \cong P_3 + (n-3)K_1$.

Theorem 1.3. For every integer $n \geq 2$, $\text{cs}(K_n) = n^2 + n - n\sqrt{n^2 + 2n + 7} - 2$. In particular, $\lambda(K_n, G) = \text{cs}(K_n)$ for some graph G if and only if $G \cong K_n \setminus e$, where $K_n \setminus e$ is the graph obtaining from K_n by deletion one edge e.

Theorem 1.4. Let $n \geq 2$ be an integer. Then $\text{cs}(K_{n,n}) = 2(n - \sqrt{n^2 - 1})^2$. In particular, $\lambda(K_{n,n}, G) = \text{cs}(K_{n,n})$ for some graph G if and only if $G \cong K_{n-1,n+1}$.

2. Cospectrality of graphs with at most one edge

In this section we will determine the cospectrality of graphs with at most one edge. Let G be a simple graph of order n and size m. Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of G. It is well known that $\lambda_1 + \cdots + \lambda_n = 0$ and $\lambda_1^2 + \cdots + \lambda_n^2 = 2m$. We now give the proof of Theorem 1.1 in which we determine the cospectrality of graphs with no edge.

Proof of Theorem 1.1. Let G'_n be a simple graph of order n and size m' with eigenvalues $\lambda'_1 \geq \cdots \geq \lambda'_n$. Since the eigenvalues of nK_1 are $\lambda_1 = \cdots = \lambda_n = 0$, then

$$\lambda(nK_1, G'_n) = \lambda'_1^2 + \cdots + \lambda'_n^2 = 2m'.$$
Since G'_n is not isomorphic to nK_1, $m' \geq 1$. So the minimum value of $\lambda(nK_1, G'_n)$ is 2 and it happens for $G'_n = K_2 + (n-2)K_1$. □

Proof of Theorem 1.2. Let $n \geq 3$ be an integer and let G'_n be a simple graph of order n and size m' with eigenvalues $\lambda'_1 \geq \cdots \geq \lambda'_n$. Since the eigenvalues of $K_2 + (n-2)K_1$ are $\lambda_1 = 1$, $\lambda_2 = \cdots = \lambda_{n-1} = 0$, $\lambda_n = -1$,

$$\lambda(K_2 + (n-2)K_1, G'_n) = (\lambda'_1 - 1)^2 + \lambda'_2^2 + \cdots + \lambda'_{n-1}^2 + (\lambda'_n + 1)^2 = 2m' + 2 - 2\lambda'_1 + 2\lambda'_n.$$

Now, we want to find the minimum value of $m' - \lambda'_1 + \lambda'_n$ among all graphs of order n and size m'. By Perron–Frobenius Theorem (see [2, Theorem 0.13]), $\lambda'_n \geq -\lambda'_1$. Thus

$$\lambda(K_2 + (n-2)K_1, G'_n) = 2m' + 2 - 2\lambda'_1 + 2\lambda'_n \geq 2m' + 4\lambda'_1 + 2.$$

We claim that for every graph $G'_n \not\cong K_2 + (n-2)K_1, P_3 + (n-3)K_1$, the following holds

$$\lambda(K_2 + (n-2)K_1, G'_n) > 2(\sqrt{2} - 1)^2.$$

Since

$$\lambda(K_2 + (n-2)K_1, P_3 + (n-3)K_1) = 2(\sqrt{2} - 1)^2,$$

the validity of our claim completes the proof. To prove the claim we consider the following cases:

Case 1. Let $\lambda'_1 \geq 1 + \sqrt{0.5}$. Then $(\lambda'_1 - 1)^2 \geq 0.5$. Thus

$$\lambda(K_2 + (n-2)K_1, G'_n) = (\lambda'_1 - 1)^2 + \lambda'_2^2 + \cdots + \lambda'_{n-1}^2 + (\lambda'_n + 1)^2 \geq 0.5 > 2(\sqrt{2} - 1)^2.$$

Case 2. Let $\lambda'_1 < 1 + \sqrt{0.5}$. Then for $m' \geq 4$, $2m' \geq 4\lambda'_1$. Since

$$\lambda(K_2 + (n-2)K_1, G'_n) \geq 2m' - 4\lambda'_1 + 2,$$

it follows that $\lambda(K_2 + (n-2)K_1, G'_n) \geq 2$ and so we are done. To complete the proof of our claim it remains to compute $\lambda(K_2 + (n-2)K_1, G'_n)$ for all graphs G'_n with at most 3 edges. These graphs are as follows, nK_1, $K_2 + (n-2)K_1$, $2K_2 + (n-4)K_1$, $P_3 + (n-3)K_1$, $3K_2 + (n-6)K_1$, $P_3 + K_2 + (n-5)K_1$, $K_3 + (n-3)K_1$, $P_4 + (n-4)K_1$ and $K_{1,3} + (n-4)K_1$. One can easily see that for the latter graphs the claim is valid. This completes the proof. □
3. Cospectrality of the complete graph

In this section we will determine the cospectrality of the complete graphs. Let G be a simple graph of order n and size m. In this section we show that for every integer $n \geq 2$, $cs(K_n) = \lambda(K_n, K_n \setminus e)$, where e is an arbitrary edge of K_n. First we prove some lemmas.

Theorem 3.1. (Theorem 9.1.1 of [3]) Let G be a graph of order n and H be an induced subgraph of G with order m. Suppose that $\lambda_1(G) \geq \cdots \geq \lambda_n(G)$ and $\lambda_1(H) \geq \cdots \geq \lambda_m(H)$ are the eigenvalues of G and H, respectively. Then for every i, $1 \leq i \leq m$, $\lambda_i(G) \geq \lambda_i(H) \geq \lambda_{n-m+i}(G)$.

Let X be a graph. Recall that a partition π of $V(X)$ with cells C_1, \ldots, C_r is equitable if the number of neighbors in C_j of a vertex u in C_i is a constant b_{ij}, independent of u.

Theorem 3.2. (Theorem 9.3.3 and Exercise 3 in page 213 of [3]) If π is an equitable partition of a graph X, then the characteristic polynomial of $A(X/\pi)$ divides the characteristic polynomial of $A(X)$. Moreover, the spectral radius of $A(X/\pi)$ is equal to the spectral radius of $A(X)$.

Note that in Theorem 3.2, X/π denotes the directed graph with the r cells of π as its vertices and b_{ij} arcs from the ith to the jth cells of π is called the quotient of X over π, and denoted by X/π. The entries of the adjacency matrix of this quotient are given by $A(X/\pi)_{ij} = b_{ij}$.

Let K_n^t be the graph obtained from K_n by deleting $n - t - 1$ edges from one vertex of K_n. By the following lemma one can compute the spectrum of K_n^t.

Lemma 3.3. Let $V(K_n) = \{v_0, v_1, \ldots, v_{n-1}\}$. Let $1 \leq t \leq n-2$ and $K_n^t = K_n \setminus \{v_0v_{t+1}, v_0v_{t+2}, \ldots, v_0v_{n-1}\}$. Suppose that $f(\lambda) := \lambda^3 - (n-3)\lambda^2 - (n+t-2)\lambda + t(n-t-2)$. Then

$$ Spec(K_n^t) = \{-1, \ldots, -1, \lambda_1, \lambda_2, \lambda_3\}, $$

where λ_1, λ_2, λ_3 are the roots of the polynomial $f(\lambda)$ and $-1 \leq \max\{\lambda_1, \lambda_2, \lambda_3\}$.

Proof. Let $A = \{v_0\}$, $B = \{v_1, \ldots, v_t\}$ and $C = \{v_{t+1}, \ldots, v_{n-1}\}$. It is easy to see that the partition $\{A, B, C\}$ of vertices of K_n^t is an equitable partition with the following matrix

$$ M = \begin{bmatrix}
0 & t & 0 \\
1 & t-1 & n-1-t \\
0 & t & n-t-2
\end{bmatrix}. $$
where the first (second and third) row and column corresponds to A (B and C, respectively). Since $\text{Spec}(K_{n-1}) = \{n-2, -1, \ldots, -1\}$ and K_{n-1} is an induced subgraph of K_n^t,
by interlacing Theorem 3.1 we conclude that K_n^t has at least $n - 3$ eigenvalues -1. By
Theorem 3.2, the three remaining eigenvalues of K_n^t are the eigenvalues of the matrix M
and the largest eigenvalue of K_n^t is among the latter three eigenvalues. On the other hand $f(\lambda) = \det(\lambda I - M)$ and $f(-1) \neq 0$. This completes the proof. \square

Corollary 3.4. For every integer $n \geq 2$ and every arbitrary edge e of K_n,

$$\text{Spec}(K_n \setminus e) = \left\{ \frac{n-3+\sqrt{n^2+2n-7}}{2}, 0, -1, \ldots, -1, \frac{n-3-\sqrt{n^2+2n-7}}{2} \right\}.$$

Proof. By the notation of Lemma 3.3, $K_n \setminus e = K_n^{n-2}$. This implies the result. \square

Remark 3.5. Let G be a graph of order n and size m. Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the
eigenvalues of G. Since $n-1 \geq -1 \geq \cdots \geq -1$ are the eigenvalues of K_n, one can obtain
that $\lambda(K_n, G) = 2m - 2n\lambda_1 + n^2 - n$. This equality shows that to obtain $\text{cs}(K_n)$ it is
sufficient to obtain a graph G for which the parameter $m - n\lambda_1$ has the minimum value.
In sequel we show that among all graphs G of order n except K_n, the minimum value of
$m - n\lambda_1(G)$ is attained on the graph $K_n \setminus e$.

Lemma 3.6. For every integer $n \geq 3$ and every edge e of K_n, $\lambda(K_n, K_n \setminus e) < 2$. If $n = 2$, then $\lambda(K_n, K_n \setminus e) = 2$.

Proof. For $n = 2$, there is nothing to prove. Let $n \geq 3$. Using Corollary 3.4 and
Remark 3.5 one can obtain the result. \square

Lemma 3.7. Let $n \geq 3$ be an integer. Let $K = K_n \setminus \{e, e'\}$, where e and e' are two
adjacent edges in K_n. Then $\lambda(K_n, K) > \lambda(K_n, K_n \setminus e)$.

Proof. Note that $K = K_n^{n-3}$. By Lemma 3.3 $\lambda_1(K)$ is a root of the polynomial $f(\lambda) = \lambda^3 - (n-3)\lambda^2 - (2n-5)\lambda + n - 3$. Since the roots of the derivation $f'(\lambda)$ (with respect
to λ) of $f(\lambda)$ are $\frac{n-3+\sqrt{n^2-6}}{3}$, f is an increasing function on the interval $[\frac{n-3+\sqrt{n^2-6}}{3}, \infty)$. Using Corollary 3.4 one can see that $\lambda_1(K_n \setminus e) - \frac{1}{n} > n - 2 > \frac{n-3+\sqrt{n^2-6}}{3}$. It is
not hard to see that $f(\lambda_1(K_n \setminus e) - \frac{1}{n}) > 0$. On the other hand f is increasing on
$[\frac{n-3+\sqrt{n^2-6}}{3}, \infty)$. Thus $f(\lambda) > 0$ for every $\lambda \geq \lambda_1(K_n \setminus e) - \frac{1}{n}$. Since $\lambda_1(K)$ is a root
of $f(\lambda)$, we conclude that $\lambda_1(K) < \lambda_1(K_n \setminus e) - \frac{1}{n}$. This shows that $\frac{n(n-1)}{2} - 2 - n\lambda_1(K) > \frac{n(n-1)}{2} - 1 - n\lambda_1(K_n \setminus e)$. Equivalently, $\lambda(K_n, K) > \lambda(K_n, K_n \setminus e)$ (see Remark 3.5). \square
We need the following theorems to prove the main result of this section.

Theorem 3.8. (See [5], and also Theorem 6.7 of [2].) A graph has exactly one positive eigenvalue if and only if its non-isolated vertices form a complete multipartite graph.

Lemma 3.9. Let G be a graph with eigenvalues $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_n$. The graph G is isomorphic to one the following graphs if and only if $\lambda_1 > 0$, $\lambda_2 \leq 0$ and $\lambda_3 < 0$.

1. $G \cong K_n$,
2. $G \cong K_1 + K_{n-1}$,
3. $G \cong K_{2,1,\ldots,1} = K_n \setminus e$ for an edge e of K_n.

Proof. Suppose that $\lambda_1 > 0$, $\lambda_2 \leq 0$ and $\lambda_3 < 0$. By Theorem 3.8, there exist some integers $t \geq 1$, $n_1, \ldots, n_t \geq 1$ and $r \geq 0$ such that $G \cong rK_1 + K_{n_1,\ldots,n_t}$. Since $\lambda_3 < 0$, $r \leq 1$. Thus it is enough to investigate the cases $G \cong K_{n_1,\ldots,n_t}$ and $G \cong K_1 + K_{n_1,\ldots,n_t}$. Note that $t \geq 2$, otherwise $G \cong \overline{K_n}$, a contradiction.

Suppose that $G \cong K_1 + K_{n_1,\ldots,n_t}$. If $n_i \geq 2$ for some i, then G has a $3K_1$ as an induced subgraph and so it follows from Interlacing Theorem that $\lambda_3 \geq 0$, a contradiction. Therefore $G \cong K_1 + K_{n-1}$ in this case.

Now assume that $G \cong K_{n_1,\ldots,n_t}$. If $n_1 = \cdots = n_t = 1$, then $G \cong K_n$. Thus we may assume that $n_i \geq 2$ for some i. Suppose that $n_i, n_j \geq 2$ for some distinct i and j. Thus the cycle C_4 of length 4 is an induced subgraph of G. Since the eigenvalues of C_4 are $2, 0, 0, -2$, it follows from Interlacing Theorem that $\lambda_3 \geq 0$, a contradiction. Thus we can assume that $n_1 \geq 2$ and $n_2 = \cdots = n_t = 1$. If $n_1 = 2$, then $G \cong K_{2,1,\ldots,1} = K_n \setminus e$ for some edge e. Therefore we may assume $n_1 \geq 3$. This shows that the star $K_{1,3}$ is an induced subgraph of G. Since the eigenvalues of $K_{1,3}$ are $\sqrt{3}, 0, 0, -\sqrt{3}$, it follows from Interlacing Theorem 3.1 that $\lambda_3 \geq 0$, a contradiction.

The converse follows from Corollary 3.4 and the fact that the eigenvalues of the complete graph K_n are $n - 1, -1, \ldots, -1$. □

Theorem 3.10. (See [4].) Let G be a graph without isolated vertices and let $\lambda_2(G)$ be the second largest eigenvalue of G. Then $0 < \lambda_2(G) \leq \sqrt{2} - 1$ if and only if one of the following holds:

1. $G \cong (\nabla_t(K_1 + K_2))\nabla K_{n_1,\ldots,n_m}$.
2. $G \cong (K_1 + K_{r,s})\nabla \overline{K_q}$.
3. $G \cong (K_1 + K_{r,s})\nabla K_{p,q}$.

Now, we are in a position to prove the main result of this section.

Theorem 3.11. Let G be a graph of order n. If $G \not\cong K_n$ and $G \not\cong K_n \setminus e$, then $\lambda(K_n, G) \geq 2$ or $\lambda(K_n, G) > \lambda(K_n, K_n \setminus e)$.

Author's personal copy
Proof. Since $G \not\cong K_n, K_n \setminus e, n \geq 3$. Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of G. Therefore

$$\lambda(K_n, G) = (\lambda_1 - (n - 1))^2 + (\lambda_2 + 1)^2 + \cdots + (\lambda_n + 1)^2.$$

It is easy to see that if one of the following cases holds, then $\lambda(K_n, G) \geq 2$.

Case 1. $\lambda_1 - (n - 1) \leq -\sqrt{2}$.

Case 2. $\lambda_2 \geq \lambda_3 \geq 0$.

Case 3. $\lambda_2 + 1 \geq \sqrt{2}$.

Now, suppose that none of the above cases occurs. Therefore we may assume that $\lambda_1 > n - 1 - \sqrt{2}, \lambda_2 < \sqrt{2} - 1$ and $\lambda_3 < 0$.

Suppose that $\lambda_2 \leq 0$. Thus it follows from Lemma 3.9 and the hypothesis, $G \cong K_1 + K_{n-1}$. Therefore $\lambda(K_n, G) = 2$.

Now suppose that $\lambda_2 > 0$. Thus $\lambda_1 > n - 1 - \sqrt{2}, 0 < \lambda_2 < \sqrt{2} - 1$ and $\lambda_3 < 0$. Hence Theorem 3.10 can be applied.

Case a. $G \cong (\nabla_1(K_1 + K_2))\nabla(K_{n_1, \ldots, n_m})$. If $t = 0$, then $G \cong K_{n_1, \ldots, n_m}$, which is not possible by Theorem 3.8. If $t \geq 2$, then $(K_1 + K_2)\nabla(K_1 + K_2)$ is an induced subgraph of G. Since

$$\text{Spec}((K_1 + K_2)\nabla(K_1 + K_2)) = \{3.73205, 4.1421, 26.795, -1, -1, -24.1421\},$$

by Interlacing Theorem $\lambda_3 \geq 0$, a contradiction. Now, suppose that $t = 1$. If there exists i such that $n_i \geq 3$, $K_{1,3}$ is an induced subgraph of G. Now Interlacing Theorem implies that $\lambda_3 \geq 0$, a contradiction.

Now, we may assume that $n_i \leq 2$ for all i. If $m = 1$ and $n_1 = 1$, $G \cong (K_1 + K_2)\nabla K_1$, then

$$\text{Spec}(G) = \{2.17009, 3.1111, -1, -1, 48.119\}$$

and $\lambda(K_4, G) > 2$. If $m = 1$ and $n_1 = 2$, $G = (K_1 + K_2)\nabla K_2$, then

$$\text{Spec}(G) = \{2.85577, 3.2164, 0, -1, -2.17741\}.$$

Hence $\lambda_3 \geq 0$, a contradiction. Thus we may assume that $m \geq 2$. If there exist i and j such that $n_i, n_j \geq 2$, then C_4 is an induced subgraph of G, and since $\text{Spec}(C_4) = \{2, 0, 0, -2\}$, Interlacing Theorem implies that $\lambda_3 \geq 0$, a contradiction. Thus we can assume that $G \cong (K_1 + K_2)\nabla K_{n-3}$ or $G \cong (K_1 + K_2)\nabla K_{2,1,\ldots,1}$. We may also write G as follows:

1. $G \cong (K_1 + K_2)\nabla K_{n-3} = K_n \setminus \{e, e'\}$
2. $G \cong (K_1 + K_2)\nabla(K_{n-3} \setminus e'') = K_n \setminus \{e, e', e''\}$
where $e, e', e'' \in E(K_n)$, e and e' have a common vertex and e, e'' and e', e'' are pairwise non-adjacent in K_n. If (1) happens then it follows from Lemma 3.7 that $\lambda(K_n, G) > \lambda(K_n, K_n \setminus e)$. Now suppose that (2) happens. Assume $e = \{v_1, v_2\}$, $e' = \{v_1, v_3\}$ and $e'' = \{v_4, v_5\}$, where $v_1, \ldots, v_5 \in V(K_n)$. The induced subgraph on vertices v_1, \ldots, v_5 is $(K_1 + K_2)\nabla K_2$. Since

$$\text{Spec}((K_1 + K_2)\nabla K_2) = \{2.85577, 32164, 0, -1, -2.17741\},$$

it follows from Interlacing Theorem that $\lambda_3 \geq 0$, a contradiction.

Now it remains to investigate the following cases:

Case b. $G \cong (K_1 + K_{r,s})\nabla K_q$.

Case c. $G \cong (K_1 + K_{r,s})\nabla K_{p,q}$.

In both cases b and c, if either of r or s is greater than 1, then an induced subgraph isomorphic to $K_1 + K_{1,2}$ in G occurs. It now follows from Interlacing Theorem that $\lambda_3 \geq 0$ as $\text{Spec}(K_1 + K_{1,2}) = \{\sqrt{2}, 0, 0, -\sqrt{2}\}$. Now we may assume that $r = s = 1$. In both cases b and c, if either of q or p is greater than 1, then an induced subgraph isomorphic to $H = (K_1 + K_2)\nabla K_2$ in G occurs. Since

$$\text{Spec}(H) = \{-2.17741, -1, 0, 32164, 2.85577\}$$

it follows from Interlacing Theorem that $\lambda_3 \geq 0$, a contradiction. Therefore $q = p = 1$ and so G is isomorphic to one the following graphs:

(i) $G \cong G_1 = (K_1 + K_2)\nabla K_1$,

(ii) $G \cong G_2 = (K_1 + K_2)\nabla K_2$.

Since

$$\text{Spec}(G_1) = \{-1.48119, -1, 31111, 2.17009\}$$

and

$$\text{Spec}(G_2) = \{-1.68133, -1, -1, 35793, 3.32340\},$$

$\lambda(K_4, G_1) > 2$ and $\lambda(K_5, G_2) > 2$. This completes the proof. □

Proof of Theorem 1.3. By Lemmas 3.6 and 3.7 and Theorem 3.11, it follows that $cs(K_n) = \lambda(K_n, K_n \setminus e) = n^2 + n - n\sqrt{n^2 + 2n - 7} - 2$. This completes the proof. □

4. Cospectrality of complete bipartite graphs

Let $K_{m,n}$ be the complete bipartite graph with parts of sizes m and n. It is known that if G is a cospectral mate of $K_{m,n}$, then G is bipartite and it follows from Theorem 3.8 that $G \cong K_{r,s} + tK_1$ for some positive integers r and s and an integer $t \geq 0$, where
r + s + t = n + m and rs = mn. Therefore if m and n are positive integers such that there exist integers r > 0 and s > 0 satisfying rs = mn and r + s < m + n, then cs(K_{m,n}) = 0.

Proposition 4.1. Let m and n be positive integers. Then cs(K_{m,n}) > 0 if and only if the minimum of x + y for all positive integers x, y such that xy = mn is attained on \{x, y\} = \{m, n\}.

If n > 0, then cs(K_{n,n}) > 0 by **Proposition 4.1.** We now compute the value of cs(K_{n,n}). We need the following result in the latter computation.

Theorem 4.2. (Theorem 2 of [1]) Let G be a graph of order n without isolated vertices. Then 0 < \lambda_2(G) < \frac{1}{3} if and only if G \cong (K_1 + K_2)\overline{K_{n-3}}, where \lambda_2(G) is the second largest eigenvalue of G.

Proof of Theorem 1.4. Since for every positive integer m and n

\[\text{Spec}(K_{m,n}) = \{-\sqrt{mn}, 0, \ldots, 0, \sqrt{mn}\}, \]

it follows that \lambda(K_{n,n}, K_{n-1,n+1}) = 2(n - \sqrt{n^2 - 1})^2. If n = 2, then the result follows from Fig. 3, where the cospectrality of all graphs of order 4 is computed. Now assume that n \geq 3. Suppose, for a contradiction, that G is a graph non-isomorphic to K_{n,n} and K_{n-1,n+1} such that \lambda(K_{n,n}, G) < 2(n - \sqrt{n^2 - 1})^2. Assume \lambda_1 \geq \cdots \geq \lambda_2_n are the eigenvalues of G. Since for n \geq 3, 2(n - \sqrt{n^2 - 1})^2 < \frac{1}{9} we obtain \lambda_2 < \frac{1}{3}. Since for every graph except the complete graph, the second largest eigenvalue is non-negative (see [1, part 3 of Theorem 1]), the latter inequality shows that 0 \leq \lambda_2 < \frac{1}{3}. We can distinguish the following cases:

Case 1. Suppose that \lambda_2 = 0. Thus by Theorem 3.8, there exist some positive integers k and n_1, \ldots, n_k and an integer t \geq 0 such that G \cong tK_1 + K_{n_1,\ldots,n_k}. If k = 1, then G \cong \overline{K_{2n}} and so \lambda(K_{n,n}, G) = 2n^2 \geq 18, a contradiction. If k = 2, then G \cong tK_1 + K_{r,s} for some r and s such that r + s = 2n - t. In this case we have \lambda(K_{n,n}, G) = 2(n - \sqrt{rs})^2. It is not hard to see that if \{r, s\} \neq \{n, n\} and \{r, s\} \neq \{n-1, n+1\}, then 2(n - \sqrt{rs})^2 > 2(n - \sqrt{n^2 - 1})^2. Therefore k \geq 3. If n_1 = \cdots = n_k = 1, then G \cong tK_1 + K_{2n-t} and so \lambda(K_{n,n}, G) > 2(n - \sqrt{n^2 - 1})^2, a contradiction. Now we may assume that G has K_{1,1,2} as an induced subgraph. Since \lambda_3(K_{1,1,2}) = -1, then it follows from Interlacing Theorem that \lambda^2_{2n-1} \geq 1 and so \lambda(K_{n,n}, G) \geq 1, a contradiction.

Case 2. Assume that 0 < \lambda_2 < \frac{1}{3}. By Theorem 4.2, we conclude that there exists an integer t \geq 0 such that G \cong tK_1 + (K_1 + K_2)\overline{K_{2n-t-3}}. If 2n - t - 3 = 1, then it is easy to \lambda(K_{n,n}, G) > 2(n - \sqrt{n^2 - 1})^2, a contradiction. If 2n - t - 3 > 1, then G has K_{1,1,2} as an induced subgraph and the rest is similar to previous part.

This completes the proof. \(\Box\)
Fig. 1. Cospectrality of graphs with 2 vertices.

Fig. 2. Cospectrality of graphs with 3 vertices.

5. Cospectrality of graphs of order at most 4

In this section (see Figs. 1, 2 and 3), we find the cospectrality of all graphs of order at most 4.

Based on cospectrality of graphs with at most 4 vertices, one can observe the following facts:

1. It is not in general true that if \(cs(G) = \lambda(G, H) \) for some graph \(H \), then \(cs(H) = \lambda(G, H) \); for example \(cs(A_4) = \lambda(A_4, A_3) \) but \(cs(A_3) = \lambda(A_3, A_2) \) (see Fig. 2); also \(cs(B_3) = \lambda(B_3, B_4) \) but \(cs(B_4) = \lambda(B_4, B_9) \) (see Fig. 3).

2. It is not in general true that if \(G \) is a regular graph and \(cs(G) = \lambda(G, H) \) for some graph \(H \), then \(H \) is also regular; for example \(cs(A_4) = \lambda(A_4, A_3) \) (see Fig. 2); also \(cs(B_9) = \lambda(B_9, B_4) \) (see Fig. 3).

The following question is natural to ask.

Question 5.1. Let \(G \) and \(H \) be two graphs such that \(\lambda(G, H) = cs(G) = cs(H) \). For which graph theoretical property \(\rho \), if \(G \) has \(\rho \) then so does \(H \)?

It is well-known that if \(\lambda(G, H) = cs(G) = cs(H) = 0 \) (that is \(Spec(G) = Spec(H) \)), then the answer of **Question 5.1** for graph properties such as being bipartite and regularity is positive.

We propose the following question to finish the paper.

Question 5.2. Is there a constant \(c \) for which if \(cs(G) = \lambda(G, H) \), then \(|E(G)| - |E(H)| \leq c \)?
Remark 5.3. Concerning Question 5.2 we have the following remarks. By Figs. 2 and 3, c can be chosen 1 for graphs with at most 4 vertices. However for graphs of order 5, it is easy to see that $\text{cs}(K_{2,3}) = 2(\sqrt{6} - 2)^2$ and $\lambda(K_{2,3}, G) = 2(\sqrt{6} - 2)^2$ for some graph G if and only if $G \cong K_{1,4}$ or $G \cong K_{2,2} + K_1$. By similar arguments given in Section 4, it is not hard to see that for all $n \geq 3$, $\text{cs}(K_{n,n+1}) = \lambda(K_{n,n+1}, K_{n-1,n+2}) = 2(\sqrt{n^2 + n - \sqrt{n^2 + n - 2}})^2$ and the graph $K_{n-1,n+2}$ is the only graph G satisfying the equality $\lambda(K_{n,n+1}, G) = \text{cs}(K_{n,n+1})$. Therefore for graphs with at least $2n + 1 \geq 7$ vertices if the constant c exists it is at least 2.

Acknowledgements

We are grateful to referees for their useful comments. The research of the first author was in part supported by a grant (No. 92050219) from School of Mathematics, Institute for Research in Fundamental Sciences (IPM). The research of the second author was
in part supported by a grant (No. 92050012) from School of Mathematics, Institute for Research in Fundamental Sciences (IPM). The research of the authors is financially supported by the Center of Excellence for Mathematics, University of Isfahan.

References