Non-triviality of Tate cohomology for certain classes of finite p-groups

Alireza Abdollahi, Maria Guedri & Yassine Guerboussa

To cite this article: Alireza Abdollahi, Maria Guedri & Yassine Guerboussa (2017) Non-triviality of Tate cohomology for certain classes of finite p-groups, Communications in Algebra, 45:12, 5188-5192, DOI: 10.1080/00927872.2017.1298773

To link to this article: http://dx.doi.org/10.1080/00927872.2017.1298773

Accepted author version posted online: 07 Mar 2017.
Published online: 07 Mar 2017.
Non-triviality of Tate cohomology for certain classes of finite p-groups

Alireza Abdollahia,b, Maria Guedric, and Yassine Guerboussad

aDepartment of Mathematics, University of Isfahan, Isfahan, Iran; bSchool of Mathematics Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; cDepartment of Mathematics, University Constantine I, Constantine, Algeria; dDepartment of Mathematics, University Kasdi Merbah Ouargla, Ouargla, Algeria

ABSTRACT

We prove that the Tate cohomology groups $\hat{H}^n(G/\Phi(G), Z(\Phi(G)))$ are non-trivial, whenever G is a finite p-group of class 3, or the pth term of the upper central series of G contains $Z(\Phi(G))$. This confirms a conjecture of Schmid for these groups.

ARTICLE HISTORY
Received 27 October 2016
Revised 9 February 2017
Communicated by S. Sehgal

KEYWORDS
Finite p-groups; group cohomology

MATHEMATICS SUBJECT CLASSIFICATION
20D15; 20J06

1. Introduction

Let Q be a finite group and A be a Q-module. We say that A is **cohomologically trivial over Q** if the Tate cohomology groups $\hat{H}^n(S, A)$ are trivial for all integers n, and all subgroups $S \leq Q$.

The interest in modules of trivial cohomology over finite groups was first influenced by class field theory. Remarkable work in this direction was done by Tate [12], and Nakayama (see [8] and [9, 10]). Similar results, probably with different motivations, were obtained by Gaschütz [5] (the same main result was obtained independently by Uchida [14]). Gaschütz–Uchida result (which we shall use freely in the sequel) states that if Q and A are finite p-groups, then A is cohomologically trivial over Q if and only if there exists an integer n such that $\hat{H}^n(Q, A) = 0$. This result was used by Gaschütz to prove his famous result on the existence of non-inner p-automorphisms of finite p-groups. In several situations, regarding the non-inner automorphisms of finite p-groups (see e.g. [3] for explaining the main problem), one encounters cohomology groups arising as follows:

Suppose that G is a finite p-group and $N \triangleleft G$, then $Z(N)$ can be viewed as a G/N-module with the action $a^xN = x^{-1}ax, a \in Z(N)$ and $x \in G$. Thus we can consider the cohomology groups $\hat{H}^n(G/N, Z(N))$. Schmid has conjectured in [11] that

Conjecture 1.1 ([11, p. 3]). For every finite non-abelian p-group G, $Z(\Phi(G))$ does not have trivial cohomology over $G/\Phi(G)$.

Some investigations of Conjecture 1.1 and related problems can be found in [1, 2]. A finite non-abelian p-group which satisfies Conjecture 1.1 will be termed a **Schmid group** and an NS-group otherwise.

Schmid has shown that regular p-groups satisfy Conjecture 1.1 (see [11]). More generally, every semi-abelian p-group is a Schmid group by [4, Theorem 1]. However, it is shown in [2] that there are NS-groups...
of order 2^8. These counter examples were found via the following GAP code ([13]):

```gap
f:=function(G)
local H0,ZP,P,i,j,L1,L2;
P:=FrattiniSubgroup(G);
ZP:=Center(P);
L1:=List(RightCosets(G,P),i->Representative(i));
L2:=List(ZP,i->Product(L1,j->iˆj));
H0:=FactorGroup(Centralizer(ZP,G),Group(L2));
return Size(H0);
end;
```

This code computes the size of the cohomology group $\hat{H}^0(G/\Phi(G),Z(\Phi(G)))$, for every given group G. So, by Gaschütz–Uchida, a finite non-abelian p-group G is an NS-group if, and only if, the corresponding output is zero.

With the above code, one can see that there are exactly 10 NS-groups among the 56092 groups of order 2^8 which are all of nilpotency class 4. More precisely, these are the groups of order 2^8 with IdSmallGroup 298, . . . , 307 in GAP library of small groups [13]. There are 10494213 groups of order 2^9, and surprisingly when applying the above code to them, one finds no NS-groups. So still the conjecture deserves some interest.

A question that remained open since the publication of [2] is whether there exist NS-groups of class 3. The main aim of our paper is to answer the latter question.

Theorem 1.2. Every finite non-abelian p-group of class at most 3 is a Schmid group.

The above result can be strengthened for $p \geq 3$ (though, the proof is simpler!).

Theorem 1.3. Every finite non-abelian p-group G satisfying $Z(\Phi(G)) \subseteq Z_p(G)$ is a Schmid group.

Our notations are standard and some of them are as follows. We use A^Q to denote the submodule of A formed by the elements fixed by Q. For a subset B of A, $C_Q(B)$ denotes the subgroup of Q formed by the $x \in Q$ satisfying $b^x = b$, for all $b \in B$. The map $\tau : A \to A$ defined by $\tau (a) = \prod_{x \in Q} a^x$ will be called the trace map (induced by Q). The terms of the lower and the upper central series of Q are denoted by $\gamma_i(Q)$ and $Z_i(Q)$, respectively. \mathbb{Z}_n denotes the cyclic group of order n, and any further unexplained notation may produce no ambiguity.

2. Some consequences of the triviality of the cohomology

In this section, we assume that Q and A are finite p-groups, and A is a Q-module.

Proposition 2.1. If A is a cohomologically trivial Q-module, then

$$[A, Q]/[A, Q, Q] \cong Q/Q' \otimes A^Q.$$

Proof. Let K be the kernel of the trace map $\tau : A \to A$. The condition on A implies that $K = [A, Q]$, and $A^\tau = A^Q$. Hence, we have a short exact sequence of Q-modules

$$0 \to K \to A \to A^Q \to 0.$$

This sequence induces a long exact sequence of (Tate) cohomology groups

$$\cdots \to \hat{H}^n(Q,A) \to \hat{H}^n(Q,A^Q) \to \hat{H}^{n+1}(Q,K) \to \hat{H}^{n+1}(Q,A) \to \cdots$$
As $\hat{H}^{n}(Q, A) = 0$, for all n, it follows that
$$
\hat{H}^{n}(Q, A^{Q}) \cong \hat{H}^{n+1}(Q, K).
$$

For $n = -2$, we have $\hat{H}^{-1}(Q, K) = \ker \tau'/[K, Q]$; where τ' is the restriction of τ on K. Therefore, by definition of K, $\ker \tau' = K$, hence $\hat{H}^{-1}(Q, K) = [A, Q]/[A, Q, Q]$. On the other hand, $\hat{H}^{-2}(Q, A^{Q})$ is nothing but the first homology group $H_{1}(Q, A^{Q})$; and since A^{Q} is a trivial Q-module, we have $\hat{H}^{-2}(Q, A^{Q}) = Q/Q' \otimes A^{Q}$. Thus $[A, Q]/[A, Q, Q] \cong Q/Q' \otimes A^{Q}$.

Corollary 2.2. If A is a cohomologically trivial Q-module, then
$$
|A| = |A^{Q}||Q/Q' \otimes A^{Q}||[A, Q, Q]|.
$$

Proof. Note that $A/[A, Q] \cong A^{T} = A^{Q}$. The claim now follows from Proposition 2.1.

The following result is due to Schmid (see [11, Proposition 1]).

Proposition 2.3. If $A \neq 0$ is a cohomologically trivial over Q, then for every subgroup H of Q, we have $C_{Q}(A^{H}) = H$.

Assume that we have an NS-group G. For every $x \in G - \Phi(G)$, we can consider $A = Z(\Phi(G))$ as a (\bar{x})-module, where $\bar{x} = x\Phi(G)$. It follows that A has trivial cohomology over (\bar{x}); hence by Proposition 2.3, $C_{(\bar{x})}(A) = 1$. In other words, x does not commute with A. This proves the following.

Lemma 2.4. For every NS-group G, we have $C_{Q}(Z(\Phi(G))) = \Phi(G)$.

3. Proof of Theorem 1.3

First, we need the following result (see [7, Corollary 1.2]).

Lemma 3.1. If H is a finite p-group of class at most p, then $\gamma_{2}(H)$ and $H/Z(H)$ have the same exponent.

Lemma 3.2. Let G be a finite p-group, and let $A = Z(\Phi(G))$. If $A \subseteq Z_{p}(G)$, then for every $x \in G$, the group (A, x) has nilpotency class at most p, and $\gamma_{2}((A, x))$ has exponent at most p.

Proof. We have $\gamma_{2}((A, x)) = \langle [a, x^2] | a \in A, i \in \mathbb{N} \rangle \subseteq Z_{p-1}(G)$. Hence, by induction, $\gamma_{n}((A, x)) = Z_{p-1}(G)$, for $2 \leq n \leq p + 1$. In particular, $\gamma_{p+1}((A, x)) = 1$, as desired.

Let $\bar{x} = x\Phi(G)$, $K = (\bar{x})$, and consider A as a K-module. For $n \geq 2$, let $\gamma_{n}(A, K)$ be the subgroup generated by all the commutators $[t_{1}, t_{2}, \ldots, t_{i}]$, with $i \geq n$, $t_{1} \in A$, and the other t_{j}’s lie in $A \cup K$ and at least $n - 1$ of them lie in K. As A is abelian, it follows that $\gamma_{n}(A, K) = [A, A^{n-1}K]$ which coincides with $\gamma_{n}((A, x))$. As we have seen above, $\gamma_{p}((A, x)) \subseteq Z_{p}(G)$; thus $\gamma_{p}(A, K) \subseteq Z_{p}(G)$. Therefore K acts p-centrally on $\gamma_{p}(A, K)$, that is, K fixes every element of order dividing p (if $p = 2$) in $\gamma_{p}(A, K)$. By [7, Theorem 1.1 (iii)], K and $[A, K]$ have the same exponent, so $\exp([A, K]) \leq p$. But, $\gamma_{2}((A, x)) = [A, K]$, the result follows.

Proof of Theorem 1.3. Set $A = Z(\Phi(G))$, and assume for a contradiction that A has trivial cohomology over $Q = G/\Phi(G)$. It follows that for every $\bar{x} \in Q$, A is a cohomologically trivial (\bar{x})-module. Therefore, $0 = \hat{H}^{0}(\bar{x}, A) = A^{\bar{x}}/A^{1}$, where τ is the trace map $\tau(a) = a^{1+x+\cdots+x^{p-1}}$, $a \in A$. We claim that $A^{T} \leq Z(G)$. It is straightforward to see that $\tau(a) = (ax^{-1})^{p}x^{p}$, for all $a \in A$. By the Hall-Petrescu formula,

$$
(ax^{-1})^{p} = a^{p}x^{-p}c_{2}^{\binom{p}{2}} \cdots c_{p}^{\binom{p}{p}}
$$
with \(c_i \in \gamma_i((a, x)) \). By Lemma 3.2, we have
\[
(ax^{-1})^p = a^p x^{-p} c_p,
\]
with \(c_p \in Z(G) \). Thus \(\tau(a) = a^p x^{-p} c_p x^p = a^p c_p \). By Lemmas 3.2 and 3.1, we have \(a^p \in Z((a, x)) \), for all \(x \in G \). Hence, \(a^p \in Z(G) \). Thus \(\tau(a) \in Z(G) \), for all \(a \in A \); this proves the claim. Now, as \(A^{(x)} = A^\tau \), we have \(C_Q(A^{(x)}) = Q \); however, by Proposition 2.3, \(C_Q(A^{(x)}) = \langle x \rangle \), so \(Q = \langle x \rangle \). This holds if and only if \(G \) is cyclic, a contradiction. \(\square \)

4. Proof of Theorem 1.2

By the proof of Theorem 1.3 (or alternatively by [1, Theorem 3.6]), we may assume here that \(p = 2 \) and that our group has class exactly 3.

First, we need the following important reduction from [2].

Lemma 4.1 ([2, Theorem 3.7]). Let \(G \) be a finite non-abelian 2-group of class 3, and let \(A = Z(\Phi(G)) \). Then \(G \) is an NS-group if and only if the following conditions hold:

1. \(C_G(A) = \Phi(G) \).
2. \(A^4 = Z(G) \).
3. \(d(A) = 2 \).

Lemma 4.2. If \(G \) is an NS-group of class 3, and \(A \) denotes \(Z(\Phi(G)) \), then
\[
A/ Z(G) \cong Z_4 \oplus Z_2.
\]

Proof. Let \(Q = G/\Phi(G) \). First, we claim that \(A^Q = Z(G) \). Indeed, if \(Q = \langle x_1 \Phi(G), x_2 \Phi(G) \rangle \), then \(G = \langle x_1, x_2 \rangle \); hence \(A^Q = A \cap Z(G) \). But by Lemma 2.4, \(Z(G) \) lies in \(A \), the claim follows. By [2, Lemma 3.9], \(Z(G) \) is cyclic, and by Lemma 4.1(3), \(Q = Z_2 \oplus Z_2 \); therefore \(Q/ Q \otimes A^Q \cong Z_2 \oplus Z_2 \). It follows from Corollary 2.2 that \(|A| = 4|Z(G)||[A, Q, Q]| \). Let \(a \in A \) and \(x \in Q \). As \([A, Q, Q] \subseteq Z(G) \), the map \(t \mapsto [a, x, t] \) is a group homomorphism from \(Q \) to \([A, Q, Q] \). Hence, \([a, x, t]^2 = [a, x, t^2] = 1 \), for all \(t \in Q \). This shows that \([A, Q, Q] \) has exponent 2 (\([A, Q, Q] \) is not trivial by Theorem 1.3). Since \(Z(G) \) is cyclic, we have \(|[A, Q, Q]| = 2 \). This proves that \(A/ Z(G) \) has order 8. Among the abelian groups of order 8, only \(Z_4 \oplus Z_2 \) has exponent 4, but by Lemma 4.1(2), \(A/ Z(G) \) has exponent 4, the result follows. \(\square \)

Lemma 4.3. With the assumptions of Lemma 4.2, there exist \(a, b \in A \) such that
\[
A = \langle a \rangle \oplus \langle b \rangle
\]
with \(b \) of order 2, and \(a \) of order \(2^{r+2} \), where \(2^r = |Z(G)| \).

Proof. We can write \(A = \langle a \rangle \oplus B \), where \(a \) is an element of \(A \) of maximal order. As \(A^4 = \langle a^4 \rangle \oplus B^4 \), and \(A^4 = Z(G) \) is cyclic, we have \(B^4 = 1 \). Now we have \(Z(G) = A^4 = \langle a^4 \rangle \), so \(a^4 \) has order \(2^r \) and \(a \) has order \(2^{r+2} \). By Lemma 4.2,
\[
(\langle a \rangle/\langle a^4 \rangle) \oplus B \cong Z_4 \oplus Z_2,
\]
hence by the unique factorization theorem of finite abelian groups, we have \(B \cong Z_2 \). If we set \(B = \langle b \rangle \), then \(A = \langle a \rangle \oplus \langle b \rangle \), and \(a, b \) are as desired. \(\square \)

Lemma 4.4. With the assumptions and notation of Lemma 4.3, there exists \(x, y \in G \) such that \(G = \langle x, y \rangle \), and \(x \) centralizes \(b \).

Proof. Let \(A_1 = \Omega_1(A) = \langle a^{r+1} \rangle \oplus \langle b \rangle \). Then \(A_1 \) is a normal elementary abelian subgroup of \(G \). Thus \(G/C_G(A_1) \) can be embedded in \(\text{Aut}(A_1) = GL(2, 2) \). The 2-part of \(|GL(2, 2)| \) is 2, so \(|G: C_G(A_1)| \leq 2 \).
As b is not central, $|G : C_G(A_1)| = 2$; that is, $C_G(A_1)$ is a maximal subgroup of G. Now any $y \in G - C_G(A_1)$ and $x \in C_G(A_1) - \Phi(G)$ do the claim.

In conclusion, if G is an NS-group of class 3, then G is a 2-group which satisfies:
- $G = \langle x, y \rangle$;
- $A := Z(\Phi(G)) = \langle a \rangle \oplus \langle b \rangle$;
- $b^2 = [a, x] = 1$, and $(a^4) = Z(G)$.

Now, consider A as a (\bar{x})-module. It follows that $\hat{H}^0((\bar{x}), A) = 0$. We have $A^{(\bar{x})}$ contains $(a^4) \oplus \langle b \rangle$, so it is not cyclic; but $A^{(\bar{x})}$ coincides with the image of the trace map $\tau' : A \to A$, $\tau'(t) = tt^x$. As $\tau'(b) = 1$, $A^{\tau} = A^{(\bar{x})}$ is cyclic; a contradiction. This completes the proof of Theorem 1.2.

Acknowledgments

A part of this work was done while the second and the third authors were visiting the School of Mathematics, Institute for Research in Fundamental Sciences (IPM). These authors are grateful for the hospitality of all the people there.

Funding

The research of the first author was in part supported by a grant (No. 95050219) from School of Mathematics, Institute for Research in Fundamental Sciences (IPM). The research of the first author is financially supported by the Center of Excellence for Mathematics, University of Isfahan. We are grateful to the referee for careful reading and useful remarks.

References