Characterization of $\text{SL}(2, q)$ by its Non-commuting Graph*

Alireza Abdollahi

Department of Mathematics, University of Isfahan
Isfahan 81746-73441, Iran
and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM)
Tehran, Iran

e-mail: abdollahi@member.ans.org

Abstract. Let G be a non-abelian group and $Z(G)$ be its center. The non-commuting graph \mathcal{A}_G of G is the graph whose vertex set is $G \setminus Z(G)$ and two vertices are joined by an edge if they do not commute. Let $\text{SL}(2, q)$ be the special linear group of degree 2 over the finite field of order q. In this paper we prove that if G is a group such that $\mathcal{A}_G \cong \mathcal{A}_{\text{SL}(2, q)}$ for some prime power $q \geq 2$, then $G \cong \text{SL}(2, q)$.

MSC 2000: 20D60
Keywords: non-commuting graph, general linear group, special linear group

1. Introduction and results

Let G be a non-abelian group and $Z(G)$ be its center. One can associate with G a graph whose vertex set is $G \setminus Z(G)$ and two vertices are joined by an edge whenever they do not commute. We call this graph the non-commuting graph of G and it will be denoted by \mathcal{A}_G. The non-commuting graph \mathcal{A}_G was first introduced by Paul Erdős [4] to formulate the following question: If every complete subgraph of \mathcal{A}_G is finite, is there a finite bound on the cardinalities of complete subgraphs of \mathcal{A}_G?

*This research was in part supported by a grant from IPM (No. 87200118).
Neumann [4] answered positively Erdős question by proving that \(|G : Z(G)| = n\) is finite and \(n\) is obviously the requested finite bound.

The non-commuting graph has been studied by many people (see e.g., [1], [3] and [5]). It is proved in [7] (resp. in [8]) that if \(G\) is a finite group with \(A_G \cong A_{\text{PGL}(2,q)}\) (resp. \(A_G \cong A_{\text{SL}(2,q)}\)), then \(G \cong \text{PSL}(2,q)\) (resp., \(G \cong A_{10}\)). For any prime power \(q\), let \(\text{GL}(2,q)\) (resp. \(\text{SL}(2,q)\)) be the general (resp. special) linear group of degree 2 over the finite field of order \(q\). In this paper we study the groups whose non-commuting graphs are isomorphic to either \(\text{GL}(2,q)\) or \(\text{SL}(2,q)\). Our main results are the following.

Theorem 1.1. Let \(G\) be a group such that \(A_G \cong A_{\text{GL}(2,q)}\) for some prime power \(q > 3\). Then \(G/Z(G) \cong \text{PGL}(2,q)\), \(G' \cong \text{SL}(2,q)\) and \(Z(G)\) is of order \(q - 1\). In particular, if \(q\) is even, then \(G = G' \times Z(G)\).

Theorem 1.2. Let \(G\) be a group such that \(A_G \cong A_{\text{SL}(2,q)}\) for some prime power \(q \geq 2\). Then \(G \cong \text{SL}(2,q)\).

For any prime power \(q\), we denote by \(\text{PGL}(2,q)\) (resp. \(\text{PSL}(2,q)\)) the projective general (resp. special) linear group of degree 2 over the finite field of order \(q\).

2. Proofs

Here for convenience, we remind some of the properties of non-commuting graphs and common properties of groups with isomorphic non-commuting graphs.

Let \(G\) and \(H\) be two non-abelian groups such that \(A_G \cong A_H\). By Lemma 3.1 of [1], if one of \(G\) or \(H\) is finite, then so is the other. The order of \(A_G\) is \(|G| - |Z(G)|\) and so \(|G| - |Z(G)| = |H| - |Z(H)|\). The degree of a vertex \(x\) in \(A_G\) is equal to \(|G| - |C_G(x)|\). Thus the multisets of degrees of vertices of two graphs \(A_G\) and \(A_H\) are the same.

A non-abelian group \(G\) is called an AC-group, if the centralizer \(C_G(x)\) of every non-central element \(x\) of \(G\) is abelian.

Recall that a non-empty subset \(X\) of the vertices of a simple graph \(\Gamma\) is called independent if every two distinct vertices of \(X\) are not joint by an edge in \(\Gamma\). Thus an independent set \(S\) of the non-commuting graph of a group is a set of pairwise commuting non-central elements of the group.

Lemma 2.1. Let \(G\) and \(H\) be two finite non-abelian groups with \(A_G \cong A_H\).

1. If \(|G| = |H|\), then the multisets (sets with multiplicities) \(\{C_G(g) : g \in G \setminus Z(G)\}\) and \(\{C_H(h) : h \in H \setminus Z(H)\}\) are equal.
2. If \(G\) is an AC-group, then \(H\) is also an AC-group.

Proof. (1) It is straightforward, if we note that the set of non-adjacent vertices to a vertex \(x\) in the non-commuting graph \(H\) is \(C_H(x) \setminus Z(H)\), and note that from \(|G| = |H|\) we also have \(|Z(G)| = |Z(H)|\), since \(|H| - |Z(H)| = |G| - |Z(G)|\).

(2) Note that a subgroup \(S\) of a non-abelian group \(K\) is abelian if and only if either \(S \setminus Z(S)\) is empty or \(S \setminus Z(S)\) is an independent set in the non-commuting
graph \mathcal{A}_G. Let ϕ be a graph isomorphism from \mathcal{A}_H onto \mathcal{A}_G. Then it is easy to see that for each $h \in H \setminus Z(H)$,

$$C_H(h) \setminus Z(H) = \phi^{-1}(C_G(\phi(h)) \setminus Z(G)).$$

(*)

Now since G is an AC-group, $C_G(g)$ is abelian for all $g \in G \setminus Z(G)$ and so it follows from (*) and the remark above that $C_H(h)$ is abelian. Hence H is also an AC-group.

Finite non-nilpotent AC-groups were completely characterized by Schmidt [6]. We use the following results in our proofs.

Theorem 2.2. ([6, Satz 5.9.]) Let G be a finite non-solvable group. Then G is an AC-group if and only if G satisfies one of the following conditions:

1. $G/Z(G) \cong \text{PSL}(2, p^n)$ and $G' \cong \text{SL}(2, p^n)$, where p is a prime and $p^n > 3$.
2. $G/Z(G) \cong \text{PGL}(2, p^n)$ and $G' \cong \text{SL}(2, p^n)$, where p is a prime and $p^n > 3$.
3. $G/Z(G) \cong \text{PSL}(2, 9)$ and G' is a covering group of A_5. In particular, G' is isomorphic to

$$\mathcal{A} \cong \langle c_1, c_2, c_3, c_4, k | c_1^3 = c_2^2 = c_3^2 = c_4^2 = (c_1 c_2)^3 = (c_1 c_3)^2 = k^3, (c_1 c_4)^2 = k, c_2 c_4 = k^3 c_2 c_3, k c_4 = c_4 k \rangle.$$

For a finite simple graph I, we denote by $\omega(I)$ the maximum size of a complete subgraph of I. So $\omega(\mathcal{A}_G)$ is the maximum number of pairwise non-commuting elements in a finite non-abelian group G.

Theorem 2.3. ([Satz 5.12 of [6]]) Let G be a finite non-abelian solvable group. Then G is an AC-group if and only if G satisfies one of the following properties:

1. G is non-nilpotent and it has an abelian normal subgroup N of prime index and $\omega(\mathcal{A}_G) = |N : Z(G)| + 1$.
2. $G/Z(G)$ is a Frobenius group with Frobenius kernel and complement $F/Z(G)$ and $K/Z(G)$, respectively, and F and K are abelian subgroups of G; and $\omega(\mathcal{A}_G) = |F : Z(G)| + 1$.
3. $G/Z(G)$ is a Frobenius group with Frobenius kernel and complement $F/Z(G)$ and $K/Z(G)$, respectively, and K is an abelian subgroup of G, $Z(F) = Z(G)$, and $F/Z(G)$ is of prime power order; and $\omega(\mathcal{A}_G) = |F : Z(G)| + \omega(\mathcal{A}_F)$.
4. $G/Z(G) \cong S_4$ and V is a non-abelian subgroup of G such that $V/Z(G)$ is the Klein 4-group of $G/Z(G)$; and $\omega(\mathcal{A}_G) = 13$.
5. $G = A \times P$, where A is an abelian subgroup and P is an AC-subgroup of prime power order.
Proof of Theorems 1.1 and 1.2. Let \(q_1 = p_1^{n_1} > 3 \) and \(q_2 = p_2^{n_2} \geq 2 \), where \(p_1 \) and \(p_2 \) are two prime numbers. Let \(M_1 = \text{GL}(2, q_1) \) and \(M_2 = \text{SL}(2, q_2) \) and suppose that \(G_1 \) and \(G_2 \) are two groups such that \(A_{G_i} \cong M_i \) for \(i = 1, 2 \).

If \(q_1 = 2 \), then \(M_2 \cong S_3 \) is the symmetric group of degree 3 and so by Proposition 3.2 of [1], \(G_2 \cong M_2 \). If \(q_2 = 3 \), then \(M_2 \) is a group of order 24 and its center has order 2. As there is some element \(g \) with \(|C_{G_2}(g)| = 6 \), we see that there is no normal Sylow 3-subgroup in \(G_2 \). Hence \(G_2/Z(G_2) \cong A_4 \). So either \(G_2 \cong M_2 \) or \(Z_2 \times A_4 \). But as there are elements \(h \in G_2 \) with \(|C_{G_2}(h)| = 4 \), we have \(G_2 \cong M_2 \).

Now let \(q_2 > 3 \). If \(q_2 \) is even, then \(\text{PSL}(2, q_2) \cong M_2 \) and so \(A_{G_2} \cong A_{\text{PSL}(2, q_2)} \). Then by Corollary 5.3 of [1], \(G_2 \cong \text{PSL}(2, q_2) \cong M_2 \). Therefore we may assume that \(q_2 \geq 5 \) is odd.

By Proposition 4.3 of [1], \(|G_i| = |M_i| \) for \(i = 1, 2 \). By Lemma 3.5 of [1], \(M_i \)'s are AC-groups and so by Lemma 2.1(2) \(G_i \)'s are also AC-groups. Now since \(A_{G_i} \cong M_i \) and \(|G_i| = |M_i| \), by Lemma 2.1 we have the following equality between multisets
\[
W_i = \{ |C_{G_i}(x)| \mid x \in G_i \setminus Z(G_i) \} = \{ |C_{M_i}(g)| \mid g \in M_i \setminus Z(M_i) \}, \quad i = 1, 2.
\]

Also, since the order of two graphs \(A_{G_i} \) and \(A_{M_i} \) are the same, we have that
\[
|G_i| - |Z(G_i)| = |M_i| - |Z(M_i)| \quad \text{and so} \quad |Z(G_i)| = |Z(M_i)| \quad (i = 1, 2).
\]

Therefore, it follows from Propositions 3.14 and 3.26 of [1] that the multiset \(W_1 \) (resp. \(W_2 \)) consists of three distinct integers \(q_1(q_1-1)^2 \) (resp. \(q_2(q_2-1)/2 \), \(q_2^2-1 \) (resp. \(q_2(q_2+1)/2 \)) and \(q_1(q_1-1) \) (resp. \(q_2 \)) with multiplicities \(\frac{q_1(q_1+1)}{2} \), \(\frac{q_2(q_2+1)}{2} \) and \(q_1+1 \), respectively.

We claim that both groups \(G_1 \) and \(G_2 \) are not nilpotent. Suppose, for a contradiction, that \(G_i \) is nilpotent, then so is \(G_i/Z(G_i) \). Therefore \(G_i/Z(G_i) \) has only one Sylow \(p_i \)-subgroup. Since \(W_1 \) (resp., \(W_2 \)) contains \(q_1+1 \) elements all equal to \(q_1(q_1-1) \) (resp., \(q_2(q_2+1)/2 \)), there exist two non-central elements \(x_1 \) and \(y_1 \) in \(G_1 \) (resp., \(x_2 \) and \(y_2 \) in \(G_2 \)) such that \(C_{G_1}(x_1) \neq C_{G_1}(y_1) \) and \(|C_{G_1}(x_1)| = |C_{G_1}(y_1)| = q_1(q_1-1) \) (resp., \(C_{G_2}(x_2) \neq C_{G_2}(y_2) \) and \(|C_{G_2}(x_2)| = |C_{G_2}(y_2)| = 2q_2 \)). Since \(C_{G_1}(x_1)/Z(G_1) \) and \(C_{G_2}(y_2)/Z(G_2) \) are of the same order \(q_1 \), they are Sylow \(p_1 \)-subgroups of \(G_1/Z(G_1) \) and \(G_2 \), respectively.

Now we prove that both \(G_1 \) and \(G_2 \) cannot be solvable. Suppose, for a contradiction, that \(G_i \)'s are solvable. Then since \(G_i \) are not nilpotent, it follows from Theorem 2.3 that \(G_i \)'s satisfy one of properties (1)-(4) in Theorem 2.3. Since \(q_1 > 3 \) is a prime power and \(q_2 \) is odd, both of \(|G_i/Z(G_i)| = q_1(q_1^2 - 1) \) and \(|G_2/Z(G_2)| = \frac{q_2(q_2^2 - 1)}{2} \) cannot equal to \(|S_4| = 24 \). Therefore \(G_i \)'s do not satisfy (4). If \(G_i \) satisfies either (1) or (2), then \(W_i \) contains only two distinct elements, since in the case (1), if \(x \in N \setminus Z(G_i) \), then \(C_{G_i}(x) = N \); and if \(x \in G \setminus N \) then \(C_N(x) = G \); and so \(|C_{G_1}(x)| \in \{ |G_1 : N| \} \). For every non-central element \(x \in G_i \), and in the case (3), \(|C_{G_i}(x)| \in \{ |K|, |F| \} \). This is not possible, since \(W_i \) has exactly three distinct elements.

Finally, suppose that \(G_i \) satisfies (3). Note that \(C_{G_i}(x) = C_F(x) \) for every non-central element \(x \in F \) and \(C_{G_i}(x) \) is equal to the conjugate of \(K \) which contains the non-central element \(x \). It follows that the three distinct elements of the multiset
$W'_i = \{ u/|Z(G)| \mid u \in W_i \}$ are $|K/Z(G_i)|$, r^k, r^t, where $|F/Z(G)| = r^m$ and r is a prime number. This is impossible, since no two of the numbers q_1, $q_1 + 1$ or $q_1 - 1$ (resp., q_2, $(q_2 + 1)/2$ or $(q_2 - 1)/2$) can simultaneously be powers of the same prime.

Hence G_i's are finite non-solvable AC-groups. By Theorem 2.2, G_i's satisfy one of the conditions (1)–(4) stated in Theorem 2.2. If G_i satisfies (3), then as A_6 has self-centralizing elements of order 4 and 5, G_i contains two elements x_i, y_i such that $|G_i(x_i)| = 4$ and $|G_i(y_i)| = 5$. This implies that $q_i \in \{4, 5\}$ and $q_2 = 9$. Therefore $|G_i/Z(G_i)| = 4 \cdot (4^2 - 1) = 4 \cdot (5^2 - 1)$, which is impossible, since $|G_i/Z(G_i)| = |\text{PSL}(2, 9)| = \frac{9 \cdot (9^2 - 1)}{2}$. Since $M_2 = \text{SL}(2, 9)$, $|Z(M_2)| = 2$. But 3 divides $Z(G_i)$ by Theorem 2.2, a contradiction.

If G_i satisfies (4), then as $\text{PGL}(2, 9)$ contains self-centralizing elements of order 8 and 10, G_i contains two elements x_i and y_i such that $|C_{G_i}(x_i)| = 8$ and $|C_{G_i}(y_i)| = 10$.

It follows that $\{8, 10\} \subset \{q_1, \frac{q_2 - 1}{2}, \frac{q_2 + 1}{2}\}$, which is a contradiction as q_1 is a prime power; and for $i = 1$, it follows that $q_1 = 9$. Hence $|Z(M_1)| = 8$. But 3 divides $Z(G_i)$, a contradiction. Thus G_i does not satisfy both (3) and (4).

Now suppose that G_i satisfies either (1) or (2). The group $\text{PGL}(2, r^m)$ (resp. $\text{PSL}(2, r^m)$) has a partition \mathcal{P} consisting of $r^m + 1$ Sylow r-subgroups, $\frac{(r^m + 1) \cdot r^m}{2}$ cyclic subgroups of order $r^m - 1$ (resp. $r^m - 1$, $r^m + 1$) Sylow r-subgroups of order $r^m + 1$ (resp. $r^m - 1$, $r^m + 1$) (see pp. 185–187 and p. 193 of [2]).

Now [5, 5.3.3] in p. 112 states that if $x \in G_i \setminus Z(G_i)$, then $C_{G_i}(x_i)/Z(G_i)$ belongs to \mathcal{P}. Suppose that $G_i/Z(G_i) \cong \text{PGL}(2, r^m)$ (resp. $\text{PSL}(2, r^m)$). Then there exist elements $x_1, x_2, x_3 \in G_i \setminus Z(G_i)$ such that $|C_{G_i}(x_1)/Z(G_i)| = r^m$, $|C_{G_i}(x_2)/Z(G_i)| = r^m + 1$ (resp. $\frac{(r^m + 1) \cdot r^m}{2}$, $\frac{(r^m + 1) \cdot r^m}{2}$).

Therefore, if $G_i/Z(G_i) \cong \text{PGL}(2, r^m)$ (resp. $\text{PSL}(2, r^m)$), then $\{q_1 - 1, q_1, q_1 + 1\} = \{r^m - 1, r^m, r^m + 1\}$ (resp. $\{r^m - 1, r^m, r^m + 1\}$) $\{r^m - 1, r^m, r^m + 1\}$ (resp. $\frac{(r^m + 1) \cdot r^m}{2}$, $\frac{(r^m + 1) \cdot r^m}{2}$).

It follows that, if $G_2/Z(G_2) \cong \text{PGL}(2, r^m)$ then $q_2 = r^m + 1$, $q_2 - 1 = r^m$ and $q_2 = r^m - 1$. Since $q_2 \geq 5$, we have a contradiction as $3 \leq q_2 - q_2 - 1 = r^m + 1 - r^m + 1 = 2$. Hence $G_2/Z(G_2) \cong \text{PGL}(2, r^m)$, $G_2' \cong \text{SL}(2, r^m)$ and $r^m = q_2$.

Now since $|G_2| = |G_2'| = |M_2|$, we have that $G_2 \cong M_2 = \text{SL}(2, q_2)$. This completes the proof of Theorem 1.2.

Now if $G_1/Z(G_1) \cong \text{PGL}(2, r^m)$ (resp. $\text{PSL}(2, r^m)$), it follows that $q_1 = r^m$ (resp. $q_1 = 2^m$). Since $\text{PSL}(2, 2^m) \cong \text{PGL}(2, 2^m)$, we have if G_i satisfies either (1) or (2), then $G_1/Z(G_1) \cong \text{PGL}(2, q_1)$ and $G_1' \cong \text{SL}(2, q_1)$.

Therefore G_1 is a group satisfying the following conditions:

$G_1/Z(G_1) \cong \text{PGL}(2, q_1)$ (●), $G_1' \cong \text{SL}(2, q_1)$ and $|Z(G_1)| = q_1 - 1$.

If $q_1 = 2^m$ for some integer $m > 1$, then $\text{SL}(2, q_1) \cong \text{PGL}(2, q_1) \cong \text{PSL}(2, q_1)$. Thus as $\text{PSL}(2, q_1)$ is a non-abelian simple group, it follows from (●) that $G_1 =
and since G_1' is also non-abelian simple, $G_1' \cap Z(G_1) = 1$. Therefore $G_1 = G_1' \times Z(G_1)$. This completes the proof of Theorem 1.1.

Acknowledgments. This work was done during author's sabbatical leave study in Summer 2007 at ICTP, Trieste, Italy. He is grateful to University of Isfahan for its financial support as well as ICTP for their warm hospitality. He was also supported by the Center of Excellence for Mathematics, University of Isfahan. The author is indebted to the referee for his/her careful reading, valuable comments and pointing out a serious error in the previous version of Theorem 1.1.

References

Received March 19, 2008