ON SEMIPRIME RIGHT GOLDIE MCCOY RINGS

A. R. NASR-ISFAHANI

Department of Mathematics, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
E-mail: a_nasr_isfahani@yahoo.com

Abstract. In this note we first show that for a right (resp. left) Ore ring \(R \) and an automorphism \(\sigma \) of \(R \), if \(R \) is \(\sigma \)-skew McCoy then the classical right (resp. left) quotient ring \(Q(R) \) of \(R \) is \(\sigma \)-skew McCoy. This gives a positive answer to the question posed in Başer et al. [1]. We also characterize semiprime right Goldie (von Neumann regular) McCoy (\(\sigma \)-skew McCoy) rings.

Keywords: McCoy ring, Classical quotient ring, Semiprime right Goldie ring.
AMS Subject Classification: 16S36; 16U80; 16U20

1. Introduction

Throughout this note \(R \) denotes an associative ring with unity and \(\sigma \) is an automorphism of \(R \). We denote \(R[x; \sigma] \) the Ore extension (skew polynomial ring) whose elements are the polynomials over \(R \), the addition is defined as usual and the multiplication subject to the relation \(xa = \sigma(a)x \) for any \(a \in R \). According to the Nielsen [4], a ring \(R \) is called right (resp. left) McCoy if for any nonzero polynomials \(f(x), g(x) \in R[x] \), \(f(x)g(x) = 0 \) implies that \(f(x)r = 0 \) (resp. \(rf(x) = 0 \)), for some \(0 \neq r \in R \). Başer et al. in [1], introduced a natural generalization of McCoy rings. Namely, a ring \(R \) with the endomorphism \(\sigma \) is called \(\sigma \)-skew McCoy if for any nonzero polynomials \(f(x), g(x) \in R[x; \sigma] \), \(f(x)g(x) = 0 \) implies that \(f(x)r = 0 \), for some \(0 \neq r \in R \).

Suppose that the classical right quotient ring \(Q(R) \) of \(R \) exists. Then for an automorphism \(\sigma \) of \(R \) and any \(pq^{-1} \in Q(R) \) where \(p, q \in R \) with \(q \) regular, the induced map \(\bar{\sigma} : Q(R) \rightarrow Q(R) \) defined by \(\bar{\sigma}(pq^{-1}) = \sigma(p)\sigma(q)^{-1} \) is also an automorphism. Başer et al. posed a question whether the classical (right) quotient ring \(Q(R) \) of a \(\sigma \)-skew McCoy ring \(R \) has to be \(\sigma \)-skew McCoy. In this note we first give a positive answer to this question. Namely, we will prove that if \(R \) is a \(\sigma \)-skew McCoy ring then the classical right (left) quotient ring \(Q(R) \) of \(R \) is a \(\sigma \)-skew McCoy ring. An endomorphism \(\sigma \) of a ring \(R \) is called right (resp. left) reversible if \(b\sigma(a) = 0 \) (resp. \(\sigma(b)a = 0 \)) whenever \(ab = 0 \) for \(a, b \in R \) (for more details see [1]). We show that for a semiprime right Goldie (von Neumann regular) ring \(R \) with an automorphism \(\sigma \), \(R \) is \(\sigma \)-skew McCoy, \(\sigma \)-reversible \(\iff \) \(Q \) is \(\sigma \)-skew McCoy, \(\sigma \)-reversible \(\iff \) \(R \) is \(\sigma \)-skew Armendariz (i.e. for polynomials \(f(x) = a_0 + a_1x + \cdots + a_nx^n \) and \(g(x) = b_0 + b_1x + \cdots + b_mx^m \) in \(R[x; \sigma] \), \(f(x)g(x) = 0 \) implies \(a_i\sigma^i(b_j) = 0 \) for each \(0 \leq i \leq n \) and \(0 \leq j \leq m \)) \(\iff \) \(Q \) is \(\sigma \)-skew Armendariz \(\iff \) \(R \) is \(\sigma \)-rigid (i.e. \(a = 0 \) whenever \(a\sigma(a) = 0 \) for \(a \in R \)) \(\iff \) \(Q \) is \(\sigma \)-rigid, where \(Q \) is a classical right quotient ring of \(R \). We also show that for a semiprime right Goldie ring \(R \), \(R \) is right linearly McCoy (i.e. for each non-zero linear polynomials
such that \(Q \) is a \(\sigma \)-skew McCoy ring.

Thus we have

\[\text{Corollary 2.3. Let } R \text{ be a right (resp. left) Ore ring and } \sigma \text{ an automorphism of } R. \text{ Then for each element } g \in T = Q(R)[x; \sigma] \text{ there exists a regular element } e \in R \text{ such that } ge \in S = R[x; \sigma] \text{ (resp. } cg \in S = R[x; \sigma]). \]

\[\begin{align*}
\text{Proof. If } g & \in Q(R), \text{ then for some regular element } c \in R \text{ and } a \in R \text{ we have } g = ac^{-1} \text{ and } ge \in S. \text{ Now assume inductively that for all elements } g \in T \text{ of degree less than } n \text{ the assertion is hold and let } g = q_0 + \cdots + q_n x^n \in T. \text{ Let } q_0 = ac^{-1} \text{ with } a \in R \text{ and regular element } c \in R. \text{ Let } \sigma^n(b) = c \text{ for some regular element } b \in R.
\end{align*} \]

Then \(gb = (q_0 + \cdots + q_{n-1} x^{n-1})b + q_n \sigma^n(b) x^n. \) Now we have \(gb = h' + ac^{-1}cx^n \) with \(h' \in T \) and \(deg(h') < n. \) By induction hypothesis there exists a regular element \(d \in R \) with \(h'd \in S. \) Thus we have \(gbd = h'd + ax^nd \in S \) and the result follows.

\[\begin{align*}
\text{Theorem 2.2. Let } R \text{ be a right (resp. left) Ore ring and } \sigma \text{ an automorphism of } R. \text{ If } R \text{ is a } \sigma \text{-skew McCoy ring then the classical right (resp. left) quotient ring } Q(R) \text{ of } R \text{ is a } \sigma \text{-skew McCoy ring.} \]

\[\begin{align*}
\text{Proof. Let } R \text{ be a right Ore, } \sigma \text{-skew McCoy ring and } f(x), g(x) \in Q(R)[x; \sigma] \text{ such that } f(x)g(x) = 0. \text{ By Lemma 2.1., there exist regular element } e \in R \text{ and } f_1 \in R[x; \sigma] \text{, such that } f(x) = f_1 c^{-1}. \text{ So we have } f_1 c^{-1}g(x) = 0. \text{ There exist regular element } e \in R \text{ and } f_2 \in R[x; \sigma] \text{, such that } e^{-1}g(x) = f_2 e^{-1}, \text{ by Lemma 2.1. Thus we have } f_1 f_2 e^{-1} = 0 \text{ and hence } f_1 f_2 = 0. \text{ So there exists } 0 \neq r \in R \text{ such that } f_1 r = 0 \text{ and hence } f(x)cr = f_1 c^{-1}cr = 0. \text{ Thus the classical right quotient ring } Q(R) \text{ of } R \text{ is a } \sigma \text{-skew McCoy. Now assume that } R \text{ is a left Ore, } \sigma \text{-skew McCoy ring and } f(x), g(x) \in Q(R)[x; \sigma] \text{ such that } f(x)g(x) = 0. \text{ By Lemma 2.1., there exist regular element } c \in R \text{ and } f_1 \in R[x; \sigma], \text{ such that } cg(x) = f_1. \text{ Since } f(x)c^{-1} \in Q(R)[x; \sigma] \text{ so there exist regular element } e \in R \text{ and } f_2 \in R[x; \sigma], \text{ such that } ef(x)c^{-1} = f_2, \text{ by Lemma 2.1. Thus we have } f_2 f_1 = ef(x)c^{-1}cg(x) = 0 \text{ and hence there exists } 0 \neq r \in R \text{ such that } f_2 r = 0. \text{ So } ef(x)c^{-1}r = 0 \text{ and hence } f(x)c^{-1}r = 0. \text{ Thus the classical left quotient ring } Q(R) \text{ of } R \text{ is } \sigma \text{-skew McCoy.} \end{align*} \]

\[\begin{align*}
\text{Corollary 2.3. Let } R \text{ be a right (resp. left) Ore ring. If } R \text{ is a right (resp. left) McCoy ring then the classical right (resp. left) quotient ring } Q(R) \text{ of } R \text{ is a right (resp. left) McCoy ring.} \end{align*} \]
Lemma 2.4. Let σ be an automorphism of a ring R and R be a σ-reversible ring. Then for each \(e = e^2 \in R \), \(σ(e) = e \) and R is an abelian ring.

Proof. Let \(e = e^2 \in R \). We have \(e(1 - e) = (1 - e)e = 0 \) and hence \(σ(e)(1 - e) = (1 - e)σ(e) = σ(1 - e)e = eσ(1 - e) = 0 \). Thus \(σ(e) = e \). Now let \(r ∈ R \). There exists \(s ∈ R \) such that \(σ(s) = r \). For each \(e = e^2 ∈ R \), \((1 - e)es = e(1 - e)s = 0 \) and hence \(σ(es)(1 - e) = σ((1 - e)s)e = 0 \). Thus \(er(1 - e) = (1 - e)re = 0 \) and hence \(er = re \).

Theorem 2.5. Let R be a right (resp. left) Ore ring and σ an automorphism of R. If R is a right (resp. left) σ-reversible ring then the classical right (resp. left) quotient ring \(Q(R) \) of R is a right (resp. left) \(σ \)-reversible ring.

Proof. Let \(R \) be a right Ore, right \(σ \)-reversible ring and \(ab^{-1}, cd^{-1} ∈ Q(R) \) such that \(ab^{-1}cd^{-1} = 0 \). \(b^{-1}c = c_1b_1^{-1} \) for some \(c_1 ∈ R \) and regular element \(b_1 ∈ R \). So \(ac_1 = 0 \) and hence \(c_1σ(a) = 0 \). Since \(c_1σ(a)σ(b) = 0 \), then \(σ(ab)σ(c_1) = 0 \) and hence \(acb_1 = abc_1 = 0 \). Thus \(ac = 0 \) and hence \(cσ(a) = 0 \). There exist regular element \(d_1 ∈ R \) and \(a_1 ∈ R \) such that \(σ(a)d_1 = da_1 \). So \(cσ(a)d_1 = 0 \) and hence \(da_1σ(c) = σ(a)d_1σ(c) = 0 \). Thus \(a_1σ(c) = 0 \) and so \(σ(c)a_1 = 0 \). \(cd^{-1}σ(ab^{-1}) = cd^{-1}σ(a)σ(b)^{-1} = cd^{-1}(da_1d_1^{-1})σ(b)^{-1} = ca_1d_1^{-1}σ(b)^{-1} = 0 \) and hence \(Q(R) \) is a right \(σ \)-reversible ring. Now assume that \(R \) is a left \(σ \)-reversible ring and \(ab^{-1}, cd^{-1} ∈ Q(R) \) such that \(ab^{-1}cd^{-1} = 0 \). \(b^{-1}c = c_1b_1^{-1} \) for some \(c_1 ∈ R \) and regular element \(b_1 ∈ R \). So \(ac_1 = 0 \) and hence \(σ(c_1)a = 0 \). Since \(σ(c_1)ab = 0 \), then \(σ(ab)σ(c_1) = 0 \) and hence \(acb_1 = abc_1 = 0 \). Thus \(ac = 0 \) and hence \(σ(c)a = 0 \). There exist regular element \(d_1 ∈ R \) and \(a_1 ∈ R \) such that \(ad_1 = σ(a)d_1 \). So \(σ(c)ad_1 = 0 \) and hence \(σ(c)σ(d)a_1 = σ(c)ad_1 = 0 \) and then \(σ(a_1)σ(c)d = 0 \). Thus \(a_1c = 0 \) and so \(σ(c)a_1 = 0 \). \(σ(c)d^{-1}ab^{-1} = σ(c)σ(d)^{-1}σ(d)ad_1^{-1}b^{-1} = 0 \) and hence \(Q(R) \) is a left \(σ \)-reversible ring.

Corollary 2.6. Let R be a right (resp. left) Ore ring. If R is a reversible ring then the classical right (resp. left) quotient ring \(Q(R) \) of R is a reversible ring.

Theorem 2.7. Let R be a semiprime right Goldie ring and σ an automorphism of R. Then the following are equivalent:

1. R is σ-skew McCoy, σ-reversible;
2. Q is σ-skew McCoy, σ-reversible;
3. R is σ-skew Armendariz;
4. Q is σ-skew Armendariz;
5. R is σ-rigid;
6. Q is σ-rigid;

where Q is the classical right quotient ring of R.

Proof. The statements 3, 4, 5 and 6 are equivalent by [3, Theorem 4.9.]. For the implication 1 → 5, Q is σ-skew McCoy by Theorem 2.2. Also Q is a semisimple artinian by Goldie’s Theorem and hence \(Q ∼ M_{n_1}(D_1) × ⋯ × M_{n_k}(D_k) \), where \(D_i \) is a division ring and \(n_i \) is a positive integer for each \(1 ≤ i ≤ k \). By Theorem 2.5. and Lemma 2.4., Q is an abelian ring. So for each \(1 ≤ i ≤ k \), \(n_i = 1 \) and hence Q
A. R. NASR-ISFAHANI

is a reduced ring. Thus \(R \) is a reduced \(\sigma \)-reversible and hence \(\sigma \)-rigid ring. If \(R \) is a \(\sigma \)-rigid it is easy to see that \(R \) is a \(\sigma \)-skew McCoy, \(\sigma \)-reversible ring. By the same argument we have the equivalence (2) \(\Leftrightarrow \) (6).

Theorem 2.8. Let \(R \) be a von Neumann regular ring and \(\alpha \) an automorphism of \(R \). Then the following statements are equivalent:

1. \(R \) is \(\sigma \)-skew McCoy, \(\sigma \)-reversible;
2. \(Q \) is \(\bar{\sigma} \)-skew McCoy, \(\bar{\sigma} \)-reversible;
3. \(R \) is \(\sigma \)-skew Armendariz;
4. \(Q \) is \(\bar{\sigma} \)-skew Armendariz;
5. \(R \) is \(\sigma \)-rigid;
6. \(Q \) is \(\bar{\sigma} \)-rigid;

where \(Q \) is the classical right quotient ring of \(R \).

Proof. Since any von Neumann regular ring is an Ore ring and for each automorphism \(\sigma \), \(\sigma(c) \) is regular for each regular element \(c \in R \), then the statements 3, 4, 5 and 6 are equivalent by [3, Theorem 6.9.]. The implication 1 \(\Rightarrow \) 5, follows from Theorems 2.2., 2.5., Lemma 2.4. and the fact that abelian von Neumann regular rings are reduced. If \(R \) is a \(\sigma \)-rigid it is easy to see that \(R \) is a \(\sigma \)-skew McCoy, \(\sigma \)-reversible ring. By the same argument we have the equivalence (2) \(\Leftrightarrow \) (6).

Corollary 2.9. Let \(R \) be a von Neumann regular ring. Then the following statements are equivalent:

1. \(R \) is right (left) McCoy, reversible;
2. \(Q \) is right (left) McCoy, reversible;
3. \(R \) is Armendariz;
4. \(Q \) is Armendariz;
5. \(R \) is reduced;
6. \(Q \) is reduced;

where \(Q \) is the classical right quotient ring of \(R \).

Proposition 2.10. The matrix ring \(M_n(R) \) is not right linearly McCoy, for any ring \(R \) and \(n > 1 \).

Proof. Let \(f(x) = \begin{pmatrix} A & 0 & 0 \\ 0 & I_{n-2} & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} B & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x \) and \(g(x) = \begin{pmatrix} C & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} D & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x \), where \(A, B, C, D \in M_2(R) \) such that, \(A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \) and \(D = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \). Thus \(f(x), g(x) \in M_n(R)[x] \) and \(f(x)g(x) = 0 \). But if \(E \in M_n(R) \) and \(f(x)E = 0 \) then \(E = 0 \). So \(M_n(R) \) is not right linearly McCoy ring.

Let \(R \) be a ring and \(\sigma = 0 \) be a zero homomorphism of \(M_n(R) \). It is easy to see that \(M_n(R) \) is \(\sigma \)-skew McCoy ring. Proposition 2.10. motivate the following question:
Question 2.11. Is it true that for any ring R, any positive integer $n > 1$ and any nonzero homomorphism σ of $M_n(R)$, $M_n(R)$ is not σ-skew McCoy?

Theorem 2.12. Let R be a semiprime right Goldie ring. Then the following are equivalent:

1. R is a right McCoy ring;
2. Q is a right McCoy ring;
3. R is a right linearly McCoy ring;
4. Q is a right linearly McCoy ring;
5. R is a McCoy ring;
6. Q is a McCoy ring;
7. R is an Armendariz ring;
8. Q is an Armendariz ring;
9. R is a weak Armendariz ring;
10. Q is a weak Armendariz ring;
11. R is a reversible ring;
12. Q is a reversible ring;
13. R is a semicommutative ring;
14. Q is a semicommutative ring;
15. R is a symmetric ring;
16. Q is a symmetric ring;
17. R is a 2-primal ring;
18. Q is a 2-primal ring;
19. R is a reduced ring;
20. Q is a reduced ring;
21. Q is a finite direct product of division rings;

where Q is the classical right quotient ring of R.

Proof. The statements 7, 8, 9, 10, 13, 14, 19, 20 and 21 are equivalent by [3, Corollary 4.11]. If R is a right McCoy then Q is a right McCoy by Corollary 2.3. Also Q is a semisimple artinian by Goldie’s Theorem and hence $Q \simeq M_{n_1}(D_1) \times \cdots \times M_{n_k}(D_k)$, where D_i is a division ring and n_i is a positive integer for each $1 \leq i \leq k$. So by [2, Theorem 4.4], for each $1 \leq i \leq k$, $M_{n_i}(D_i)$ is a right McCoy and hence $i = 1$, by Proposition 2.10. Thus R is a reduced ring and hence, R is 2-primal, symmetric, semicommutative, reversible and Armendariz. If R is a symmetric ring, then R is reversible and hence Q is abelian semisimple. Thus Q is a reduced ring and hence R is reduced. Thus R is a McCoy ring. If R is 2-primal then R is reduced, since R is semiprime. So we have $1 \leftrightarrow 19$, $1 \leftrightarrow 17$, $1 \leftrightarrow 15$ and $1 \leftrightarrow 11$. By the same argument we have $2 \leftrightarrow 20$, $2 \leftrightarrow 18$, $2 \leftrightarrow 16$ and $2 \leftrightarrow 12$. If R is right McCoy, then Q is right McCoy and by the argument above R and Q are reduced. So we have $1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow 5 \leftrightarrow 6$ and the result follows.

We know that, there exists a McCoy ring with 1 which is not abelian [2, Theorem 7.1]. Theorem 2.12. shows that each semiprime right Goldie McCoy ring is abelian. Corollary 2.9. and Theorem 2.12. motivate the following question:
Question 2.13. Is it true that any von Neumann regular McCoy ring is abelian?

ACKNOWLEDGEMENT. The author would like to thank the Banach Algebra Center of Excellence for Mathematics, University of Isfahan.

REFERENCES