WEIGHTED SEMIGROUP MEASURE ALGEBRA AS A WAP-ALGEBRA

H.R. Ebrahimi Vishki, B. Khodsiani and A. Rejali

A Banach algebra \(\mathfrak{A} \) for which the natural embedding \(x \mapsto \hat{x} \) of \(\mathfrak{A} \) into \(WAP(\mathfrak{A})^* \) is bounded below; that is, for some \(m \in \mathbb{R} \) with \(m > 0 \) we have \(||\hat{x}|| \geq m||x|| \), is called a WAP-algebra. Through we mainly concern with weighted measure algebra \(M_b(S, \omega) \), where \(\omega \) is a weight on a semi-topological semigroup \(S \). We study those conditions under which \(M_b(S, \omega) \) is a WAP-algebra (respectively dual Banach algebra). In particular, \(M_b(S) \) is a WAP-algebra (respectively dual Banach algebra) if and only if \(wap(S) \) separates the points of \(S \) (respectively \(S \) is compactly cancellative semigroup).

We apply our results for improving some older results in the case where \(S \) is discrete.

Keywords: WAP-algebra, dual Banach algebra, Arens regularity, weak almost periodicity.

1. Introduction and Preliminaries

Throughout this paper, we study those conditions under which \(M_b(S, \omega) \) is either a WAP-algebra or a dual Banach algebra. Our main result in section 2 is that for a locally compact topological semigroup and a continuous weight \(\omega \) on \(S \), the measure algebra \(M_b(S, \omega) \) is a dual Banach algebra with respect to \(C_0(S, 1/\omega) \) if and only if for all compact subsets \(F \) and \(K \) of \(S \), the maps \(\frac{\chi_F}{\omega} \) and \(\frac{\chi_K}{\omega} \) vanishes at infinity. This improved the result of Abolghasemi, Rejali, and Ebrahimi Vishki [1] to include the case where \(S \) is not necessarily discrete. As a consequence in non-weighted case, we conclude for a locally compact topological semigroup \(S \), the measure algebra \(M_b(S) \) is a dual Banach algebra with respect to \(C_0(S) \) if and only if \(S \) is a compactly cancellative semigroup. The

1Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, IRAN, e-mail: vishki@um.ac.ir

2 Corresponding author, Department of Mathematics, University of Isfahan, Isfahan, IRAN. e-mail: b_khodsiani@sci.ui.ac.ir

3Department of Mathematics, University of Isfahan, Isfahan, IRAN. e-mail: rejali@sci.ui.ac.ir
later result improved the well known result of Dales, Lau and Strauss [7, Theorem 4.6], \(\ell_1(S) \) is dual Banach algebra with respect to \(c_0(S) \) if and only if \(S \) is weakly cancellative semigroup.

Section 3 is devoted to study WAP-algebras on a semigroup \(S \). For every weighted locally compact semi-topological semigroup \((S, \omega) \), \(M_0(S, \omega) \) is a WAP-algebra if and only if the evaluation map \(\epsilon : S \to \hat{X} \) is one to one, where \(\hat{X} = MM(wap(S, 1/\omega)) \). Our main result of this section is that \(M_0(S, \omega) \) is a WAP-algebra if and only if \(\omega \) separate the points of \(S \). If \(C_0(S, 1/\omega) \subseteq wap(S, 1/\omega) \) then \(wap(S, 1/\omega) \) separate the points of \(S \). Thus \(M_0(S, \omega) \) is a WAP-algebra. We may ask whether, if \(M_0(S, \omega) \) is a WAP-algebra then \(C_0(S, 1/\omega) \subseteq wap(S, 1/\omega) \). We answer to this question negatively by a counter example. Then we exhibit some necessary and sufficient condition for \(\omega \) separate the points of \(S \) if \(C_0(S, 1/\omega) \subseteq wap(S, 1/\omega) \). We may ask whether, if \(M_0(S, \omega) \) is a WAP-algebra then \(\omega \) separate the points of \(S \). We end the paper by some examples which show that our results cannot be improved.

The dual \(\mathfrak{A}^* \) of a Banach algebra \(\mathfrak{A} \) can be turned into a Banach \(\mathfrak{A} \)-module in a natural way, by setting

\[
\langle f \cdot a, b \rangle = \langle f, ab \rangle \quad \text{and} \quad \langle a \cdot f, b \rangle = \langle f, ba \rangle \quad (a, b \in \mathfrak{A}, f \in \mathfrak{A}^*).
\]

A dual Banach algebra is a Banach algebra \(\mathfrak{A} \) such that \(\mathfrak{A} = (\mathfrak{A}_s)^* \), as a Banach space, for some Banach space \(\mathfrak{A}_s \), and such that \(\mathfrak{A}_s \) is a closed \(\mathfrak{A} \)-submodule of \(\mathfrak{A}^* \); or equivalently, the multiplication on \(\mathfrak{A} \) is separately weak*-continuous. We call \(\mathfrak{A}_s \) the predual of \(\mathfrak{A} \). It should be remarked that the predual of a dual Banach algebra need not be unique, in general (see [5, 10]); so we usually point to the involved predual of a dual Banach algebra.

A functional \(f \in \mathfrak{A}^* \) is said to be weakly almost periodic if \(\{ f \cdot a : \|a\| \leq 1 \} \) is relatively weakly compact in \(\mathfrak{A}^* \). We denote by \(WAP(\mathfrak{A}) \) the set of all weakly almost periodic elements of \(\mathfrak{A}^* \). It is easy to verify that, \(WAP(\mathfrak{A}) \) is a (norm) closed subspace of \(\mathfrak{A}^* \).

It is known that the multiplication of a Banach algebra \(\mathfrak{A} \) has two natural but, in general, different extensions (called Arens products) to the second dual \(\mathfrak{A}^{**} \) each turning \(\mathfrak{A}^{**} \) into a Banach algebra. When these extensions are equal, \(\mathfrak{A} \) is said to be (Arens) regular. It can be verified that \(\mathfrak{A} \) is Arens regular if and only if \(WAP(\mathfrak{A}) = \mathfrak{A}^* \). Further information for the Arens regularity of Banach algebras can be found in [5, 6].

WAP-algebras, as a generalization of the Arens regular algebras, has been introduced and intensively studied in [9]. A Banach algebra \(\mathfrak{A} \) for which the natural embedding \(x \mapsto \hat{x} \) of \(\mathfrak{A} \) into \(WAP(\mathfrak{A})^* \) where \(\hat{x}(\gamma) = \gamma(x) \) for \(\gamma \in WAP(\mathfrak{A}) \), is bounded below; that is, for
some \(m \in \mathbb{R} \) with \(m > 0 \) we have \(\|ix\| \geq m\|x\| \), is called a WAP-algebra. When \(\mathfrak{A} \) is Arens regular or dual Banach algebra, the natural embedding of \(\mathfrak{A} \) into \(WAP(\mathfrak{A})^* \) is isometric [16, Corollary 4.6]. Also Theorem 3.1 shows that \(M_b(S,\omega) \) is a WAP-algebra if and only if this embedding is isometric and of course bounded below, however in general \(M_b(S,\omega) \) is neither Arens regular nor dual Banach algebra. It has also known that \(\mathfrak{A} \) is a WAP-algebra if and only if it admits an isometric representation on a reflexive Banach space.

Moreover, group algebras are also always WAP-algebras, however; they are neither dual Banach algebras, nor Arens regular in the case where the underlying group is not discrete, see [17]. Ample information about WAP-algebras with further details can be found in the impressive paper [9].

A character on an abelian algebra \(\mathfrak{A} \) is a non-zero homomorphism \(\tau : \mathfrak{A} \to \mathbb{C} \). The set of all characters on \(\mathfrak{A} \) endowed with relative weak*-topology is called character space of \(\mathfrak{A} \).

Following [3], a semi-topological semigroup is a semigroup \(S \) equipped with a Hausdorff topology under which the multiplication of \(S \) is separately continuous. If the multiplication of \(S \) is jointly continuous, then \(S \) is said to be a topological semigroup. We write \(\ell^\infty(S) \) for the commutative \(C^* \)-algebra of all bounded complex-valued functions on \(S \). In the case where \(S \) is locally compact we also write \(C(S) \) and \(C_0(S) \) for the \(C^* \)-subalgebras of \(\ell^\infty(S) \) consist of continuous elements and continuous elements which vanish at infinity, respectively. We also denote the space of all weakly almost periodic functions on \(S \) by \(wap(S) \) which is defined by

\[
wap(S) = \{ f \in C(S) : \{ R_s f : s \in S \} \text{ is relatively weakly compact} \},
\]

where \(R_s f(t) = f(ts), \ (s,t \in S) \). Then \(wap(S) \) is a \(C^* \)-subalgebra of \(C(S) \) and its character space \(S^{wap} \), endowed with the Gelfand topology, enjoys a (Arens type) multiplication that turns it into a compact semi-topological semigroup. The evaluation mapping \(\epsilon : S \to S^{wap} \) is a homomorphism with dense image and it induces an isometric \(* \)-isomorphism from \(C(S^{wap}) \) onto \(wap(S) \). Many other properties of \(wap(S) \) and its inclusion relations among other function algebras are completely explored in [3].

Let \(M_b(S) \) be the Banach space of all complex regular Borel measures on \(S \), which is known as a Banach algebra with the total variation norm and under the convolution product \(*\) defined by the equation

\[
\langle \mu * \nu, g \rangle = \int_S \int_S g(xy) d\mu(x) d\nu(y) \quad (g \in C_0(S))
\]
and as dual of $C_0(S)$. Throughout, a weight on S is a Borel measurable function $\omega : S \to (0, \infty)$ such that
\[
\omega(st) \leq \omega(s)\omega(t), \quad (s, t \in S).
\]
For $\mu \in M_b(S)$ we define $(\mu \omega)(E) = \int_E \omega d\mu$, ($E \subseteq S$ is Borel set). If $\omega \geq 1$, then
\[
M_b(S, \omega) = \{\mu \in M_b(S) : \mu \omega \in M_b(S)\}
\]
is known as a Banach algebra which is called the weighted semigroup measure algebra (see [6, 12, 13, 14] for further details about such algebras and arbitrary weight functions). Let S be a locally compact semigroup, and let $B(S)$ denote the space of all Borel measurable and bounded functions on S. Set $B(S, 1/\omega) = \{f : S \to \mathbb{C} : f/\omega \in B(S)\}$. A standard predual for $M_b(S, \omega)$ is
\[
C_0(S, 1/\omega) = \{f \in B(S, 1/\omega) : f/\omega \in C_0(S)\}.
\]
Let $f \in C(S, 1/\omega)$ then f is called ω-weakly almost periodic if the set $\{R_s f/\omega(s): s \in S\}$ is relatively weakly compact in $C(S)$, where R_s is defined as above. The set of all ω-weakly almost periodic functions on S is denoted by $wap(S, 1/\omega)$.

In the case where S is discrete we write $\ell_1(S, \omega)$ instead of $M_b(S, \omega)$ and $c_0(S, 1/\omega)$ instead of $C_0(S, 1/\omega)$. Then the space
\[
\ell_1(S, \omega) = \{f : f = \sum_{s \in S} f(s)\delta_s, \quad ||f||_{1, \omega} = \sum_{s \in S} |f(s)|\omega(s) < \infty\}
\]
(where, $\delta_s \in \ell_1(S, \omega)$ be the point mass at s which can be thought as the vector basis element of $\ell_1(S, \omega)$) equipped with the multiplication
\[
f * g = \sum_{r \in S} \sum_{st = r} f(s)g(t)\delta_r
\]
(and also define $f * g = 0$ if for each $r \in S$ the equation $st = r$ has no solution;) is a Banach algebra which will be called weighted semigroup algebra. We also suppress 1 from the notation whenever $w = 1$.

2. Semigroup Measure Algebras as Dual Banach Algebras

It is known that the semigroup algebra $\ell_1(S)$ is a dual Banach algebra with respect to $c_0(S)$ if and only if S is weakly cancellative semigroup, see [7, Theorem4.6]. Throughout this section ω is a continuous weight on S. This result has been extended for the weighted
semigroup algebras \(\ell_1(S, \omega) \); [1, 8]. In this section we extend this results to the non-discrete case. We provide some necessary and sufficient conditions that the measure algebra \(M_b(S, \omega) \) becomes a dual Banach algebra with respect to the predual \(C_0(S, 1/\omega) \).

Let \(F \) and \(K \) be nonempty subsets of a semigroup \(S \) and \(s \in S \). We put

\[
s^{-1}F = \{ t \in S : st \in F \}, \quad Fs^{-1} = \{ t \in S : ts \in F \}
\]

and we also write \(s^{-1}t \) for the set \(s^{-1}\{t\} \), \(FK^{-1} \) for \(\cup\{Fs^{-1} : s \in K\} \) and \(K^{-1}F \) for \(\cup\{s^{-1}F : s \in K\} \).

A semigroup \(S \) is called left (respectively, right) zero semigroup if \(xy = x \) (respectively, \(xy = y \)), for all \(x, y \in S \). A semigroup \(S \) is called zero semigroup if there exist \(z \in S \) such that \(xy = z \) for all \(x, y \in S \). A semigroup \(S \) is said to be left (respectively, right) weakly cancellative semigroup if \(s^{-1}F \) (respectively, \(Fs^{-1} \)) is finite for each \(s \in S \) and each finite subset \(F \) of \(S \). A semigroup \(S \) is said to be weakly cancellative semigroup if it is both left and right weakly cancellative semigroup.

A semi-topological semigroup \(S \) is said to be compactly cancellative semigroup if for every compact subsets \(F \) and \(K \) of \(S \) the sets \(F^{-1}K \) and \(KF^{-1} \) are compact set.

Lemma 2.1. Let \(S \) be a topological semigroup. For every compact subsets \(F \) and \(K \) of \(S \) the sets \(F^{-1}K \) and \(KF^{-1} \) are closed.

Proof. If \(F^{-1}K \) is empty, then it is closed. Let \(x \) be in the closure of \(F^{-1}K \). Then there is a net \((x_\alpha) \) in \(F^{-1}K \) such that \(x_\alpha \to x \). Since \(x_\alpha \in F^{-1}K \) there is a net \((f_\alpha) \) in \(F \) such that \(f_\alpha x_\alpha \in K \). Using the compactness of \(F \) and \(K \), by passing to a subnet, if necessary, we may suppose that \(f_\alpha x_\alpha \to k \) and \(f_\alpha \to f \), for some \(f \in F \) and \(k \in K \). So \(fx = k \in K \), that is \(x \in F^{-1}K \). Therefore \(F^{-1}K \) is closed. A similar argument shows that \(KF^{-1} \) is also closed. \(\square \)

In the next result we study \(M_b(S, \omega) \) from the dual Banach algebra point of view.

Theorem 2.1. Let \(S \) be a locally compact topological semigroup and \(\omega \) be a continuous weight on \(S \). Then the measure algebra \(M_b(S, \omega) \) is a dual Banach algebra with respect to the predual \(C_0(S, 1/\omega) \) if and only if for all compact subsets \(F \) and \(K \) of \(S \), the maps \(\overline{\lambda_{F^{-1}K}} \omega \) and \(\overline{\lambda_{KF^{-1}}} \omega \) vanishes at infinity.

Proof. Suppose that \(M_b(S, \omega) \) is a dual Banach algebra with respect to \(C_0(S, 1/\omega) \) and let \(\epsilon > 0 \). Let \(K, F \) be nonempty compact subsets of \(S \) with a net \((x_\alpha) \) in \(\{ t \in F^{-1}K : 1/\omega(t) \geq \epsilon \} \). Let \(C^+_{00}(S) \) denote the non-negative continuous functions with compact support on \(S \) and set \(C^+_{00}(S, 1/\omega) = \{ f \in C_0(S, 1/\omega) : f/\omega \in C^+_{00}(S) \} \). Since \(\omega \) is
continuous we may choose \(f \in C^+_{00}(S, 1/\omega) \) with \(f(K) = 1 \). There is a net \((t_\alpha) \subset F\) such that \(t_\alpha x_\alpha \in K \) and the compactness of \(F \) guarantees the existence of a subnet \((t_\gamma)\) of \((t_\alpha)\) such that \(t_\gamma \to t_0 \) for some \(t_0 \) in \(S \). Indeed, for \(s \in S \),
\[
\lim_{\gamma} \left(\frac{\delta_{t_\gamma}}{\omega}(s) \right) = \lim_{\gamma} \frac{f(t_\gamma s)}{\omega(s)} = \frac{f(t_0 s)}{\omega(s)} = \delta_{t_0} \frac{f}{\omega}(s)
\]
there is a \(\gamma_0 \) such that
\[
\{ t \in \bigcup_{\gamma \geq \gamma_0} t_\gamma^{-1} K : 1/\omega(t) \geq \varepsilon \} \subseteq \bigcup_{\gamma \geq \gamma_0} \{ r \in S : \left(\frac{\delta_{t_\gamma}}{\omega} \right)(r) \geq \varepsilon \}
\]
Let \(H = \{ t_\gamma : \gamma \geq \gamma_0 \} \cup \{ t_0 \} \). Then
\[
\{ t \in H^{-1} K : 1/\omega(t) \geq \varepsilon \} = \{ t \in \bigcup_{\gamma \geq \gamma_0} t_\gamma^{-1} K \cup t_0^{-1} K : 1/\omega(t) \geq \varepsilon \}
\]
and so \(\{ t \in H^{-1} K : 1/\omega(t) \geq \varepsilon \} \) is compact. Furthermore, \(t_\gamma x_\gamma \in K \), that is \((x_\gamma)\) is a net in compact set \(\{ t \in H^{-1} K : 1/\omega(t) \geq \varepsilon \} \). This means that \((x_\alpha)\) has a convergent subnet. Thus \(\{ t \in F^{-1} K : 1/\omega(t) \geq \varepsilon \} \) is compact set and \(\frac{x_f}{\omega} \) vanishes at infinity. Similarly \(\frac{x_f}{\omega} \) vanishes at infinity. This is the proof of necessity.

The sufficiency can be adopted from [1, Proposition 3.1] with some modifications. Let \(f \in C_0(S, 1/\omega) \), \(\mu \in M_b(S, \omega) \) and \(\varepsilon > 0 \) be arbitrary. There exist compact subsets \(F \) and \(K \) of \(S \) such that \(|\frac{f}{\omega}(s)| < \varepsilon \) for all \(s \in K \) and \(|(\mu \omega)|(S \setminus F) < \varepsilon \).

Let \(s \not\in \{ t \in F^{-1} K : \omega(t) \leq \frac{1}{\varepsilon} \} \), which is compact by hypothesis. Then
\[
|\frac{\mu f}{\omega}(s)| = \left| \int_S \frac{f(t s)}{\omega(s)} d\mu(t) \right|
\leq \left| \int_F \frac{f(t s)}{\omega(s)} d\mu(t) \right| + \left| \int_{S \setminus F} \frac{f(t s)}{\omega(s)} d\mu(t) \right|
\leq \int_F \left| \frac{f(t s)}{\omega(t s)} \right| \omega(t) d|\mu|(t) + \int_{S \setminus F} \left| \frac{f(t s)}{\omega(t s)} \right| \omega(t) d|\mu|(t)
\leq \varepsilon \int_S \omega(t) d|\mu|(t) + \| f \|_{\omega, \infty} \int_{S \setminus F} \omega(t) d|\mu|(t)
\leq \varepsilon \| \mu \|_\omega + \| f \|_{\omega, \infty}
\]
That is, \(\mu f \in C_0(S, 1/\omega) \). Therefore \(M_b(S, \omega) \) is a dual Banach algebra with respect to \(C_0(S, 1/\omega) \).

The next Corollaries are immediate consequences of Theorem 2.1.
Corollary 2.1. Let S be a locally compact topological semigroup. Then the measure algebra $M_b(S)$ is a dual Banach algebra with respect to $C_0(S)$ if and only if S is a compactly cancellative semigroup.

Corollary 2.2. [1, Theorem 2.2] For a semigroup S the semigroup algebra $\ell_1(S, \omega)$ is a dual Banach algebra with respect to the predual $c_0(S, 1/\omega)$ if and only if for all $s, t \in S$, the maps $\frac{X_{t^{-1}s}}{\omega}$ and $\frac{X_{s^{-1}t}}{\omega}$ are in $c_0(S)$.

Corollary 2.3. For a locally compact topological semigroup S, if $M_b(S)$ is a dual Banach algebra with respect to $C_0(S)$ then $M_b(S, \omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$.

Corollary 2.4. Let S be either a left zero (right zero) or a zero locally compact semigroup. There is a weight ω such that $M_b(S, \omega)$ is a dual Banach algebra with respect to $C_0(S, 1/\omega)$ if and only if S is σ-compact.

Proof. Let K and F be compact subsets of S. It can be readily verified that in either cases (being left zero, right zero or zero) the sets $F^{-1}K$ and KF^{-1} are equal to either empty or S. Put

$$S_m = \{ t \in F^{-1}K : \omega(t) \leq m \} = \{ t \in S : \omega(t) \leq m \} \quad (m \in \mathbb{N}).$$

Then $S = \cup_{m \in \mathbb{N}} S_m$ and so S is σ-compact. For the converse let $S = \cup_{n \in \mathbb{N}} S_n$ as a disjoint union of compact sets and let z be a (left or right) zero for S. Define $\omega(z) = 1$ and $\omega(x) = 1 + n$ for $x \in S_n$ then ω is a weight on S and $M_b(S, \omega)$ is a dual Banach algebra. \qed

Examples 2.1. (1) The set $S = \mathbb{R}^+ \times \mathbb{R}$ equipped with the multiplication

$$(x, y)(x', y') = (x + x', y') \quad ((x, y), (x', y') \in S)$$

and the weight $\omega(x, y) = e^{-x}(1 + |y|)$ is a weighted semigroup. In this example $[a, b]$ denotes a closed interval. As for $F = [a, b] \times [c, d]$ and $K = [e, f] \times [g, h]$, with
\[F^{-1}K = \bigcup_{(x,y) \in F} (x,y)^{-1}K \]
\[= \bigcup_{(x,y) \in F} \{(s,t) \in S : (x,y)(s,t) \in K\} \]
\[= \bigcup_{(x,y) \in F} \{(s,t) \in S : (x+s,t) \in K\} \]
\[= \bigcup_{(x,y) \in F} [e - x, f - x] \times [g, h] = [e - b, f - a] \times [g, h] \]

and
\[KF^{-1} = \bigcup_{(x,y) \in F} K(x,y)^{-1} \]
\[= \bigcup_{(x,y) \in F} \{(s,t) \in S : (s,t)(x,y) \in K\} \]
\[= \bigcup_{(x,y) \in F} \{(s,t) \in S : (x+s,y) \in K\} \]
\[= \bigcup_{(x,y) \in F} [e - x, f - x] \times \mathbb{R} = [e - b, f - a] \times \mathbb{R} \]

Thus
\[F^{-1}K = [e - b, f - a] \times [g, h] \quad \text{and} \quad KF^{-1} = \begin{cases} [e - b, f - a] \times \mathbb{R} & \text{if} \ [c, d] \cap [g, h] \neq \emptyset \\ \emptyset & \text{if} \ [c, d] \cap [g, h] = \emptyset \end{cases} \]

\(M_0(S) \) is not a dual Banach algebra by Corollary 2.1. However, for all compact subsets \(F \) and \(K \) of \(S \), the maps \(\mathcal{X}_{F^{-1}K} \) and \(\mathcal{X}_{KF^{-1}} \) vanishes at infinity. So \(M_0(S, \omega) \) is a dual Banach algebra with respect to \(C_0(S, 1/\omega) \). This shows that the converse of Corollary 2.3 may not be valid.

(2) For the semigroup \(S = [0, \infty) \) endowed with the zero multiplication, neither \(M_0(S) \) nor \(\ell_1(S) \) is a dual Banach algebra. In fact, \(S \) is neither compactly nor weakly cancellative semigroup.

3. Semigroup Measure Algebras as WAP-Algebras

In this section, for a weighted locally compact semi-topological semigroup \((S, \omega)\), we investigate some necessary and sufficient condition for \(M_0(S, \omega) \) being WAP-algebra. First, we provide some preliminaries.
Definition 3.1. Let $\tilde{\mathcal{F}}$ be a linear subspace of $B(S, 1/\omega)$, and let $\tilde{\mathcal{F}}_r$ denote the set of all real-valued members of $\tilde{\mathcal{F}}$. A mean on $\tilde{\mathcal{F}}$ is a linear functional $\tilde{\mu}$ on $\tilde{\mathcal{F}}$ with the property that
\[
\inf_{s \in S} \frac{f}{\omega}(s) \leq \tilde{\mu}(f) \leq \sup_{s \in S} \frac{f}{\omega}(s) \quad (f \in \tilde{\mathcal{F}}_r).
\]
The set of all means on $\tilde{\mathcal{F}}$ is denoted by $M(\tilde{\mathcal{F}})$. If $\tilde{\mathcal{F}}$ is also an algebra with the multiplication given by $f \odot g := (f,g)/\omega$ $(f,g \in \tilde{\mathcal{F}})$ and if $\tilde{\mu} \in M(\tilde{\mathcal{F}})$ satisfies
\[
\tilde{\mu}(f \odot g) = \tilde{\mu}(f)\tilde{\mu}(g) \quad (f,g \in \tilde{\mathcal{F}}),
\]
then $\tilde{\mu}$ is said to be multiplicative. The set of all multiplicative means on $\tilde{\mathcal{F}}$ will be denoted by $MM(\tilde{\mathcal{F}})$.

Let $\tilde{\mathcal{F}}$ be a conjugate closed, linear subspace of $B(S, 1/\omega)$ such that $\omega \in \tilde{\mathcal{F}}$.

(i) For each $s \in S$ define $\epsilon(s) \in M(\tilde{\mathcal{F}})$ by $\epsilon(s)(f) = (f/\omega)(s)$ $(f \in \tilde{\mathcal{F}})$. The mapping $\epsilon : S \rightarrow M(\tilde{\mathcal{F}})$ is called the evaluation mapping. If $\tilde{\mathcal{F}}$ is also an algebra, then $\epsilon(S) \subseteq MM(\tilde{\mathcal{F}})$.

(ii) Let $\tilde{X} = M(\tilde{\mathcal{F}})$ (resp. $\tilde{X} = MM(\tilde{\mathcal{F}})$, if $\tilde{\mathcal{F}}$ is a subalgebra) be endowed with the relative weak* topology. For each $f \in \tilde{\mathcal{F}}$ the function $\hat{\mu} \in C(\tilde{X})$ is defined by
\[
\hat{\mu}(f) := \tilde{\mu}(f) \quad (\tilde{\mu} \in \tilde{X}).
\]
Furthermore, we define $\hat{\mathcal{F}} := \{\hat{\mu} : f \in \tilde{\mathcal{F}}\}$.

Remark 3.1.

(i) The mapping $f \mapsto \hat{f} : \hat{\mathcal{F}} \rightarrow C(\tilde{X})$ is clearly linear and multiplicative if \mathcal{F} is an algebra and $\tilde{X} = MM(\tilde{\mathcal{F}})$. Also it preserves complex conjugation, and is an isometry, since for any $f \in \mathcal{F}$
\[
||\hat{f}|| = \sup\{||\hat{\mu}(f)|| : \tilde{\mu} \in \tilde{X}\} = \sup\{||\mu(f/\omega)|| : \mu \in X, ||\mu|| \leq 1\}
\]
\[
= \sup\{||\mu(f/\omega)|| : \mu \in X\} \leq \sup\{||\mu(f/\omega)|| : \mu \in C(X)^*, ||\mu|| \leq 1\}
\]
\[
= ||f/\omega|| = ||f|| = \sup\{||\mu(f/\omega)|| : s \in S\} = \sup\{||\mu(f)|| : \mu \in C(X)^*, ||\mu|| \leq 1\}
\]
\[
= \sup\{||\mu(r)|| : s \in S\} \leq ||\hat{f}||,
\]
where $X = M(\mathcal{F})$ and $\mathcal{F} = \{f/\omega : f \in \tilde{\mathcal{F}}\}$. Note that $\hat{\epsilon}(s) = \epsilon(s)(f) = (\hat{\mu}(s)(f \in \tilde{\mathcal{F}}, s \in S)$. This identity may be written in terms of dual map $\epsilon^* : C(\tilde{X}) \rightarrow C(S, 1/\omega)$ as $\epsilon^*(\hat{f}) = f$ for $f \in \tilde{\mathcal{F}}$.

(ii) Let $\tilde{\mathcal{F}}$ be a conjugate closed linear subspace of $B(S, 1/\omega)$, containing ω. Then $M(\tilde{\mathcal{F}})$ is convex and weak* compact, $co(\epsilon(S))$ is weak* dense in $M(\tilde{\mathcal{F}})$, $\hat{\mathcal{F}}^*$ is the weak*
closed linear span of $\epsilon(S)$, $\epsilon : S \rightarrow M(\tilde{F})$ is weak* continuous, and if \tilde{F} is also an algebra, then $MM(\tilde{F})$ is weak* compact and $\epsilon(S)$ is weak* dense in $MM(\tilde{F})$.

(iii) Let \tilde{F} be a C^*-subalgebra of $B(S, 1/\omega)$, containing ω. If \tilde{X} denotes the space $MM(\tilde{F})$ with the relative weak* topology, and if $\epsilon : S \rightarrow \tilde{X}$ denotes the evaluation mapping, then the mapping $f \rightarrow \tilde{\epsilon} : \tilde{F} \rightarrow C(\tilde{X})$ is an isometric isomorphism with the inverse $\epsilon^* : C(\tilde{X}) \rightarrow \tilde{F}$.

Let $\tilde{F} = \text{wap}(S, 1/\omega)$. Then \tilde{F} is a C^*-algebra and a subspace of $WAP(M_b(S, \omega))$, see [11, Theorem1.6, Theorem3.3]. Set $\tilde{X} = MM(\tilde{F})$. By the above remark $\text{wap}(S, 1/\omega) \cong C(\tilde{X})$ and so

$$M_b(\tilde{X}) \cong C(\tilde{X})^* \cong \text{wap}(S, 1/\omega)^* \subset WAP(M_b(S, \omega))^*.$$

Let $\epsilon : S \rightarrow \tilde{X}$ be the evaluation mapping. We also define $\bar{\epsilon} : M_b(S, \omega) \rightarrow M_b(\tilde{X})$, by $\langle \bar{\epsilon}(\mu), f \rangle = \int S f \omega d\mu$ for $f \in \text{wap}(S, 1/\omega) \equiv C(\tilde{X})$. Then for every Borel set B in \tilde{X},

$$\bar{\epsilon}(\mu)(B) = (\mu \omega)(\epsilon^{-1}(B)).$$

In particular, $\bar{\epsilon}(\frac{\delta_x}{\omega}) = \delta_{\epsilon(x)}$.

The next theorem is the main result of this section.

Theorem 3.1. For every weighted locally compact semi-topological semigroup (S, ω) the following statements are equivalent:

1. The evaluation map $\epsilon : S \rightarrow \tilde{X}$ is one to one, where $\tilde{X} = MM(\text{wap}(S, 1/\omega))$;
2. $\bar{\epsilon} : M_b(S, \omega) \rightarrow M_b(\tilde{X})$ is an isometric isomorphism;
3. $M_b(S, \omega)$ is a WAP-algebra.

Proof. (1) \Rightarrow (2). Take $\mu \in M_b(S, \omega)$, say $\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$, where $\mu_j \in M_b(S, \omega)^+$. Set $\nu_j = \bar{\epsilon}(\mu_j) \in M_b(\tilde{X})^+$ for $j = 1, 2, 3, 4$, and set

$$\nu = \bar{\epsilon}(\mu) = \nu_1 - \nu_2 + i(\nu_3 - \nu_4).$$

Take $\delta > 0$. For each j, there exists Borel set B_j in \tilde{X} such that $\nu_j(B) \geq 0$ for each Borel subset B of B_j and $\sum_{j=1}^4 \nu_j(B_j) > ||\nu|| - \delta$. In fact, by Hahn decomposition theorem for signed measures $\lambda_1 = \nu_1 - \nu_2$ and $\lambda_2 = \nu_3 - \nu_4$ there exist four Borel sets P_1, P_2, N_1 and N_2 in \tilde{X} such that

$$P_1 \cup N_1 = \tilde{X}, \quad P_1 \cap N_1 = \emptyset, \quad P_2 \cup N_2 = \tilde{X}, \quad P_2 \cap N_2 = \emptyset$$

and for every Borel set E of \tilde{X} we have,

$$\nu_1(E) = \lambda_1(P_1 \cap E), \quad \nu_2(E) = -\lambda_1(N_1 \cap E), \quad \nu_3(E) = \lambda_2(P_2 \cap E), \quad \nu_4(E) = -\lambda_2(N_2 \cap E).$$
that is \(\nu_1, \nu_2, \nu_3, \nu_4\) are concentrated respectively on \(P_1, N_1, P_2, N_2\).

Set \(D_1 := P_1 \cap N_2, D_2 := N_1 \cap P_2, D_3 := P_2 \cap P_1, D_4 := N_2 \cap N_1\). Then the family \(\{D_1, D_2, D_3, D_4\}\) is a partition of \(\tilde{X}\). Also for \(\delta > 0\) there is a compact set \(K\) for which

\[
||\nu|| - \delta \leq \sum_{j=1}^{4} ||\nu_{j|D_j}| - \delta \leq \sum_{j=1}^{4} \nu_{j|D_j}(K) = \sum_{j=1}^{4} \nu_j(D_j \cap K).
\]

Set \(B_j = D_j \cap K\). Then the sets \(B_1, B_2, B_3, B_4\) are pairwise disjoint.

Set \(C_j = (\epsilon)^{-1}(B_j)\), a Borel set in \(S\). Then \((\mu|_\omega)(C_j) = \nu_j(B_j)\). Since \(\epsilon\) is injection, the sets \(C_1, C_2, C_3, C_4\) are pairwise disjoint, and so

\[
||\mu||_\omega \geq \sum_{j=1}^{4} (\mu|_\omega(C_j)) \geq \sum_{j=1}^{4} (\mu_j|_\omega)(C_j) = \sum_{j=1}^{4} \nu_j(B_j) > ||\nu|| - \delta.
\]

This holds for each \(\delta > 0\), so \(||\mu||_\omega \geq ||\nu||\). A similar argument shows that \(||\mu||_\omega \leq ||\nu||\).

Thus \(\|\nu\| = ||\nu||\).

(2) \(\Rightarrow\) (1). Let \(P(S, \omega)\) denote the subspace of all probability measures of \(M_b(S, \omega)\) and \(ext(P(S, \omega))\) the extreme points of unit ball of \(P(S, \omega)\). Then \(ext(P(S, \omega)) = \{ \frac{\delta_x}{\omega(x)} : x \in S\} \cong S\) and \(ext(P(\tilde{X}) \cong \tilde{X}\), see [4, p.151]. By injectivity of \(\epsilon\), it maps the extreme points of the unit ball onto the extreme points of the unit ball, thus \(\epsilon : S \rightarrow \tilde{X}\) is a one to one map.

(2) \(\Rightarrow\) (3). Since \(\tilde{X}\) is compact, \(M_b(\tilde{X})\) is a dual Banach algebra with respect to \(C(\tilde{X})\), so it has an isometric representation \(\psi\) on a reflexive Banach space \(E\), see [9]. In the following commutative diagram,

\[
\begin{array}{ccc}
M_b(S, \omega) & \xrightarrow{\epsilon} & M_b(\tilde{X}) \\
\phi \downarrow & & \psi \downarrow \\
B(E) & &
\end{array}
\]

If \(\epsilon\) is isometric, then so is \(\phi\).

Thus \(M_b(S, \omega)\) has an isometric representation on a reflexive Banach space \(E\) if \(\epsilon\) is an isometric isomorphism. So \(M_b(S, \omega)\) is a WAP-algebra if \(\epsilon\) is an isometric isomorphism.

(3) \(\Rightarrow\) (1). Let \(M_b(S, \omega)\) be a WAP-algebra. Since \(\ell_1(S, \omega)\) is a norm closed subalgebra of \(M_b(S, \omega)\), then \(\ell_1(S, \omega)\) is a WAP-algebra. Using the double limit criterion, it is a simple matter to check that \(wap(S, 1/\omega) = WAP(\ell_1(S, \omega))\) (see also [11, Theorem3.7]) where we treat \(\ell^\infty(S, 1/\omega)\) as an \(\ell_1(S, \omega)\)-bimodule. Then \(\tilde{\epsilon} : \ell_1(S, \omega) \rightarrow wap(S, 1/\omega)^\star\) is an isometric isomorphism. Since \(wap(S, 1/\omega)\) is a \(C^*\)-algebra, as (2) \(\Rightarrow\) (1), \(\epsilon : S \rightarrow \tilde{X}\) is one to one.

\(\square\)
Corollary 3.1. The following statements are equivalent.

1. $\ell_1(S,\omega)$ is a WAP-algebra;
2. $M_b(S,\omega)$ is a WAP-algebra.

For $\omega = 1$, it is clear that $\check{X} = S^{wap}$, and the map $\epsilon : S \rightarrow S^{wap}$ is one to one if and only if $wap(S)$ separates the points of S, see [3].

Corollary 3.2. For a locally compact semi-topological semigroup S, the following statements are equivalent:

1. $M_b(S)$ is a WAP-algebra;
2. $\ell_1(S)$ is a WAP-algebra;
3. The evaluation map $\epsilon : S \rightarrow S^{wap}$ is one to one;
4. $wap(S)$ separates the points of S.

Definition 3.2. Let X, Y be sets and f be a complex-valued function on $X \times Y$.

1. We say that f is a cluster on $X \times Y$ if for each pair of sequences $(x_n), (y_m)$ of distinct elements of X, Y, respectively
 \[\lim_n \lim_m f(x_n, y_m) = \lim_m \lim_n f(x_n, y_m)\] (1) whenever both sides of (1) exist.
2. If f is cluster and both sides of 1 are zero (respectively positive) in all cases, we say that f is 0-cluster (respectively positive cluster).

In general $\{f \omega : f \in wap(S)\} \neq wap(S, 1/\omega)$. By using [2, Lemma1.4] the following is immediate.

Lemma 3.1. Let $\Omega(x, y) = \frac{\omega(xy)}{\omega(x)\omega(y)}$, for $x, y \in S$. Then

1. If Ω is cluster, then $\{f \omega : f \in wap(S)\} \subseteq wap(S, 1/\omega)$;
2. If Ω is positive cluster, then $wap(S, 1/\omega) = \{f \omega : f \in wap(S)\}$.

It should be noted that if $M_b(S)$ is Arens regular (resp. dual Banach algebra) then $M_b(S,\omega)$ is so. We don’t know that if $M_b(S)$ is WAP-algebra, then $M_b(S,\omega)$ is so. The following Lemma give a partial answer to this question.

Corollary 3.3. Let S be a locally compact topological semigroup with a Borel measurable weight function ω such that Ω is cluster on $S \times S$.

1. If $M_b(S)$ is a WAP-algebra, then so is $M_b(S,\omega)$;
2. If $\ell_1(S)$ is a WAP-algebra, then so is $\ell_1(S,\omega)$.
Proof. (1) Suppose that $M_b(S)$ is a WAP-algebra so $wap(S)$ separates the points of S. By lemma 3.1 for every $f \in wap(S)$, $f\omega \in wap(S,1/\omega)$. Thus the evaluation map $\epsilon : S \rightarrow \hat{X}$ is one to one.

(2) follows from (1). □

Corollary 3.4. For a locally compact semi-topological semigroup S,

(1) If $C_0(S) \subseteq wap(S)$, then the measure algebra $M_b(S)$ is a WAP-algebra.

(2) If S is discrete and $c_0(S) \subseteq wap(S)$, then $\ell_1(S)$ is a WAP-algebra.

Proof. (1) By [3, Corollary 4.2.13] the map $\epsilon : S \rightarrow S \subseteq wap$ is one to one, thus $M_b(S)$ is a WAP-algebra.

(2) follows from (1). □

Dales, Lau and Strauss [7, Theorem 4.6, Proposition 8.3] showed that for a semi-group S, $\ell_1(S)$ is a dual Banach algebra with respect to $c_0(S)$ if and only if S is weakly cancellative. If S is left or right weakly cancellative semigroup, then $\ell_1(S)$ is a WAP-algebra. The next example shows that the converse is not true, in general.

Example 3.1. Let $S = (\mathbb{N}, \min)$ then $wap(S) = c_0(S) \oplus \mathbb{C}$. So $\ell_1(S)$ is a WAP-algebra but S is neither left nor right weakly cancellative. In fact, for $f \in wap(S)$ and all sequences $\{a_n\}, \{b_m\}$ with distinct element in S, we have $\lim_n f(b_m) = \lim_m \lim_n f(a_n b_m) = \lambda = \lim_n \lim_m f(a_n b_m) = \lim_n f(a_n)$, for some $\lambda \in \mathbb{C}$. This means $f - \lambda \in c_0(S)$ and $wap(S) \subseteq c_0(S) \oplus \mathbb{C}$. The other inclusion is clear.

If $\{x_n\}$ and $\{y_m\}$ are sequences in S we obtain an infinite matrix $\{x_n y_m\}$ which has $x_n y_m$ as its entry in the nth row and mth column. As in [2], a matrix is said to be of row type C (resp. column type C) if the rows (resp. columns) of the matrix are all constant and distinct. A matrix is of type C if it is constant or of row or column type C.

J.W.Baker and A. Rejali in [2, Theorem 2.7(v)] showed that $\ell_1(S)$ is Arens regular if and only if for each pair of sequences $\{x_n\}, \{y_m\}$ with distinct elements in S there is a submatrix of $\{x_n y_m\}$ of type C.

A matrix $\{x_n y_m\}$ is said to be upper triangular constant if $x_n y_m = s$ if and only if $m \geq n$ and it is lower triangular constant if $x_n y_m = s$ if and only if $m \leq n$. A matrix $\{x_n y_m\}$ is said to be W-type if every submatrix of $\{x_n y_m\}$ is neither upper triangular constant nor lower triangular constant.

Theorem 3.2. Let S be a semigroup. The following statements are equivalent:

(1) $c_0(S) \subseteq wap(S)$.

(2) For each pair \(\{x_n\}, \{y_m\} \) of sequences in \(S \),
\[
\{ \chi_s(x_n y_m) : n < m \} \cap \{ \chi_s(x_n y_m) : n > m \} \neq \emptyset;
\]

(3) For each pair \(\{x_n\}, \{y_m\} \) of sequences in \(S \) with distinct elements, \(\{x_n y_m\} \) is a \(W \)-type matrix;

(4) For every \(s \in S \), every infinite set \(B \subset S \) contains a finite subset \(F \) such that
\[
\cap \{ sb^{-1} : b \in F \} \backslash \left(\cap \{ sb^{-1} : b \in B \backslash F \} \right) \text{ and } \cap \{ b^{-1} s : b \in F \} \backslash \left(\cap \{ b^{-1} s : b \in B \backslash F \} \right)
\]
are finite.

\textbf{Proof.} (1)\(\iff \) (2). For all \(s \in S \), \(\chi_s \in \text{wap}(S) \) if and only if
\[
\{ \chi_s(x_n y_m) : n < m \} \cap \{ \chi_s(x_n y_m) : n > m \} \neq \emptyset.
\]

(3)\(\Rightarrow \) (1). Let \(c_0(S) \not\subseteq \text{wap}(S) \) then there are sequences \(\{x_n\}, \{y_m\} \) in \(S \) with distinct elements such that for some \(s \in S \),
\[
1 = \lim_{m \to \infty} \lim_{n \to \infty} \chi_s(x_n y_m) \neq \lim_{n \to \infty} \lim_{m \to \infty} \chi_s(x_n y_m) = 0.
\]

Since \(\lim_{n \to \infty} \lim_{m \to \infty} \chi_s(x_n y_m) = 0 \), for \(1 > \epsilon > 0 \) there is a \(N \in \mathbb{N} \) such that for all \(n \geq N \), \(\lim_{m \to \infty} \chi_s(x_n y_m) < \epsilon \). This implies for all \(n \geq N \), \(\lim_{m \to \infty} \chi_s(x_n y_m) = 0 \). Then for \(n \geq N \), \(1 > \epsilon > 0 \) there is a \(M_n \in \mathbb{N} \) such that for all \(m \geq M_n \) we have \(\chi_s(x_m y_n) < \epsilon \). So if we omit finitely many terms, for all \(n \in \mathbb{N} \) there is \(M_n \in \mathbb{N} \) such that for all \(m \geq M_n \) we have \(x_m y_n \neq s \). As a similar argument, for all \(m \in \mathbb{N} \) there is \(N_m \in \mathbb{N} \) such that for all \(n \geq N_m \), \(x_m y_n = s \).

Let \(a_1 = x_1, b_1 \) be the first \(y_n \) such that \(a_1 y_n = s \). Suppose \(a_m, b_n \) have been chosen for \(1 \leq m, n < r \), so that \(a_n b_m = s \) if and only if \(n \geq m \). Pick \(a_r \) to be the first \(x_m \) not belonging to the finite set \(\bigcup_{1 \leq n < r} \{ x_m : x_m y_n = s \} \). Then \(a_r b_n \neq s \) for \(n < r \). Pick \(b_r \) to be the first \(y_n \) belonging to the cofinite set \(\cap_{1 \leq n \leq r} \{ y_n : x_m y_n = s \} \). Then \(a_n b_m = s \) if and only if \(n \geq m \). The sequences \((a_m), (b_n) \) so constructed satisfy \(a_m b_n = s \) if and only if \(n \geq m \). That is, \(\{a_n b_m\} \) is not of \(W \)-type and this is a contradiction.

(1)\(\Rightarrow \) (3). Let there are sequences \(\{x_n\}, \{y_m\} \) in \(S \) such that \(\{x_n y_m\} \) is not a \(W \)-type matrix, (say) \(x_n y_m = s \) if and only if \(m \leq n \). Then
\[
1 = \lim_{m \to \infty} \lim_{n \to \infty} \chi_s(x_n y_m) \neq \lim_{n \to \infty} \lim_{m \to \infty} \chi_s(x_n y_m) = 0.
\]
So \(\chi_s \not\in \text{wap}(S) \). Thus \(c_0(S) \not\subseteq \text{wap}(S) \).

(4)\(\Rightarrow \) (1) This is Ruppert criterion for \(\chi_s \in \text{wap}(S) \), see [15, Theorem 4].

\[\square \]
We conclude with some examples which show that some of the above results cannot be improved.

Examples 3.1.

(i) Let $S = \mathbb{N}$. Then for S equipped with min multiplication, the semigroup algebra $\ell_1(S)$ is a WAP-algebra but is not neither Arens regular nor a dual Banach algebra. While, if we replace the min multiplication with max then $\ell_1(S)$ is a dual Banach algebra (so a WAP-algebra) which is not Arens regular. If we change the multiplication of S to the zero multiplication then the resulted semigroup algebra is Arens regular (so a WAP-algebra) which is not a dual Banach algebra. This describes the interrelation between the concepts of being Arens regular algebra, dual Banach algebra and WAP-algebra.

(ii) Let S be the set of all sequences with $0, 1$ values. We equip S with coordinate wise multiplication. We denote by e_n the sequence with all zero unless a 1 in the n-th place. Let $s = \{x_n\} \in S$, and let $F_w(S)$ be the set of all elements of S such that $x_i = 0$ for only finitely index i. It is easy to see that $F_w(S)$ is countable. Let $F_w(S) = \{s_1, s_2, \cdots\}$. Recall that, every element $g \in \ell_\infty(S)$ can be denoted by $g = \sum_{s \in S} g(s) \chi_s$, see [6, p.65]. Suppose

$$g = \sum_{s \in S \setminus F_w(S)} g(s) \chi_s$$

be in $wap(S)$, we show that $g = 0$. Let $s = \{x_n\} \in S$, and $\{k \in \mathbb{N} : x_k = 0\} = \{k_1, k_2, \cdots\}$ be an infinite set. Put $a_n = s + \sum_{j=1}^{n} e_{k_j}$ and $b_m = s + \sum_{i=m}^{\infty} e_{k_i}$. Then

$$a_nb_m = \begin{cases} \sum_{j=m}^{n} e_{k_j} + s & \text{if } m \leq n \\ s & \text{if } m > n \end{cases}$$

Thus $g(s) = \lim_n \lim_m g(a_nb_m) = \lim_m \lim_n g(a_nb_m) = \lim_m g(s + \sum_{i=m}^{\infty} e_{k_i}) = 0$.

In fact,

$$wap(S) = \{f \in \ell_\infty(S) : f = \sum_{i=1}^{\infty} f(s_i) \chi_{s_i}, \; s_i \in F_w(S)\} \oplus \mathbb{C}$$

It is clear that $F_w(S)$ is the subsemigroup of S and $wap(F_w(S)) = \ell_\infty(F_w(S))$. So $\ell_1(F_w(S))$ is Arens regular. Let T consists of those sequences $s = \{x_n\} \in S$ such that $x_i = 0$ for infinitely index i, then T is a subsemigroup of S and $wap(T) = \mathbb{C}$. Since $e_{\ell_1} : T \to S^{wap}$ isn’t one to one, $\ell_1(S)$ is not a WAP-algebra. This shows that in general $\ell_1(S)$ need not be a WAP-algebra.
(iii) If we equip \(S = \mathbb{R}^2 \) with the multiplication \((x, y).(x', y') = (xx', x'y + y')\), then \(M_b(S) \) is not a WAP-algebra. Indeed, every non-constant function \(f \) over \(-x-axis is not in \(\text{wap}(S) \). Let \(f(0, z_1) \neq f(0, z_2) \) and \(\{x_m\}, \{y_m\}, \{\beta_n\} \) be sequences with distinct elements satisfying the recursive equation
\[
\beta_n x_m + y_m = \frac{mz_1 + nz_2}{m + n}
\]

Then
\[
\lim_{n} \lim_{m} f((0, \beta_n).(x_m, y_m)) = \lim_{n} \lim_{m} f(0, \beta_n x_m + y_m) = \lim_{n} \lim_{m} f(0, \frac{mz_1 + nz_2}{m + n}) = f(0, z_1)
\]

and similarly
\[
\lim_{m} \lim_{n} f((0, \beta_n).(x_m, y_m)) = f(0, z_2).
\]

Thus the map \(\epsilon : S \rightarrow S^{\text{wap}} \) isn't one to one, so \(M_b(S) \) is not a WAP-algebra. This shows that in general \(M_b(S) \) need not be a WAP-algebra.

(iv) Let \(S \) be the interval \([\frac{1}{2}, 1] \) with multiplication \(x.y = \max\{\frac{1}{2}, xy\} \), where \(xy \) is the ordinary multiplication on \(\mathbb{R} \). Then for all \(s \in S \setminus \{\frac{1}{2}\} \), \(x \in S \), \(x^{-1}s \) is finite. But \(x^{-1}\frac{1}{2} = [\frac{1}{2}, \frac{1}{2x}] \). Let \(B = [\frac{1}{2}, \frac{3}{4}] \). Then for all finite subset \(F \) of \(B \),
\[
\bigcap_{x \in F} x^{-1}\frac{1}{2} \setminus \bigcap_{x \in B \setminus F} x^{-1}\frac{1}{2} = [\frac{2}{3}, \frac{1}{2x_F}]
\]

where \(x_F = \max F \). By [15, Theorem 4] \(\chi_{\frac{1}{2}} \notin \text{wap}(S) \). So \(c_0(S \setminus \{\frac{1}{2}\}) \oplus \mathbb{C} \subsetneq \text{wap}(S) \).

It can be readily verified that \(\epsilon : S \rightarrow S^{\text{wap}} \) is one to one, so \(\ell_1(S) \) is a WAP-algebra but \(c_0(S) \not\subseteq \text{wap}(S) \). This is a counter example for the converse of Corollary 3.4.

(v) Take \(T = (\mathbb{N} \cup \{0\}, .) \) with 0 as zero of \(T \) and the multiplication defined by
\[
n.m = \begin{cases}
n & \text{if } n = m \\
0 & \text{otherwise.} \end{cases}
\]

Then \(S = T \times T \) is a semigroup with coordinate wise multiplication. Now let \(X = \{(k, 0) : k \in T\}, Y = \{(0, k) : k \in T\} \) and \(Z = X \cup Y \). We use the Ruppert criterion [15] to show that \(\chi_z \notin \text{wap}(S) \), for each \(z \in Z \). Let \(B = \{(k, n) : k, n \in T\}, \) then \((k, n)^{-1}(k, 0) = \{(k, m) : m \neq n\} = B \setminus \{(k, n)\} \). Thus for all finite subsets \(F \)
of B,
\[
\bigcap \{(k,n)^{-1}(k,0) : (k,n) \in F\} \setminus \bigcap \{(k,0)(k,n)^{-1} : (k,n) \in F\} \\
= \bigcap \{(k,n)^{-1}(k,0) : (k,n) \in B \setminus F\} \\
= (B \setminus F) \setminus F = B \setminus F
\]
and the last set is infinite. This means $\chi_{(k,0)} \notin \text{wap}(S)$. Similarly $\chi_{(0,k)} \notin \text{wap}(S)$.

Let $f = \sum_{n=0}^{\infty} f(0,n) \chi_{(0,n)} + \sum_{m=1}^{\infty} f(m,0) \chi_{(m,0)}$ be in $\text{wap}(S)$. For arbitrary fixed n and sequence $\{(n,k)\}$ in S, we have $\lim_k f(n,k) = \lim_k \lim_l f(n,l,k) = \lim_l \lim_k f(n,l,k) = f(n,0)$ implies $f(n,0) = 0$. Similarly $f(0,n) = 0$ and $f(0,0) = 0$. Thus $f = 0$. In fact $\text{wap}(S) \subseteq \ell^\infty(\mathbb{N} \times \mathbb{N})$. Since $\text{wap}(S)$ can not separate the points of S so $\ell_1(S)$ is not a WAP-algebra. Let $\omega(n,m) = 2^n3^m$ for $(n,m) \in S$. Then ω is a weight on S such that $\omega \in \text{wap}(S,1/\omega)$, so the evaluation map $\epsilon : S \to \hat{X}$ is one to one. This means $\ell_1(S,\omega)$ is a WAP-algebra but $\ell_1(S)$ is not a WAP-algebra. This is a counter example for the converse of Corollary 3.3.

Acknowledgments. This research was supported by the Center of Excellence for Mathematics at Isfahan university.

REFERENCES

