BAND STRUCTURE CALCULATION IN TIGHT BINDING MODEL

\[\psi_{\alpha} = \frac{1}{\sqrt{N}} \sum_{j} e^{i \mathbf{k} \cdot \mathbf{r}_j} \phi(\mathbf{r} - \mathbf{r}_j) \]

\[\text{Crystal electron wave function} \]

\[\text{Atomic electron wave function} \]

To calculate \(E(k) \) we do as follows:

\[E(k) = \langle \psi_{\alpha} | H | \psi_{\alpha} \rangle = \int \psi_{\alpha}^{*} H \psi_{\alpha} \, dv \]

\[E(k) = \frac{1}{N} \sum_{m} \sum_{j} e^{i \mathbf{k} \cdot (\mathbf{r}_m - \mathbf{r}_j)} \langle \phi(\mathbf{r} - \mathbf{r}_j) | H | \phi(\mathbf{r} - \mathbf{r}_j) \rangle \]

Okay, now if we consider only nearest neighbor atoms and neglect the overlap with the other atomic orbitals:

\[\int \rho^*(\mathbf{r} - \mathbf{p}) H \rho(\mathbf{r}) \, dv = -\gamma \]

\(\gamma \) is called the overlap integral. \(\gamma \) is a parameter that causes to be changed the energy levels to energy bands.

\[\gamma = 0 \quad \gamma \neq 0 \]

The band width depends on \(\gamma \)

For the isolated atom, i.e. localized electrons:

\[E(k) = -\alpha - \gamma \sum_{n=1}^{\infty} e^{-\beta \rho_{n1}} \]

For a 1D lattice:

\[E(k) = -\alpha - \gamma \left(2 \cos(ka)\right) \]

\[\cos(ka) = 1 - 2 \sin^2(ka/2) \]

\[E(k) = -\alpha - \gamma \left(2 - 4 \sin^2(ka/2)\right) \]

\[E(k) = -\alpha - 2\gamma + 4\gamma \sin^2(ka/2) \]

\[E(k) = E_0 + 4\gamma \sin^2(ka/2) \]
BAND STRUCTURE PLOTTING FOR A SIMPLE CUBIC LATTICE BASED ON TIGHT BINDING MODEL

\[\rho_m = (\pm a, 0, 0), (0, \pm a, 0), (0, 0, \pm a) \]

Near \(k = 0 \), the band behaves as a parabolic

\[\frac{\hbar^2 k^2}{2m} \approx \frac{1}{2} \left(\frac{\hbar^2}{2m} \right)^2 \]

\[E(k) - E_0 = \frac{\hbar^2 k^2}{2m} \]

\[m' = \frac{\hbar^2}{2\gamma a^2} \neq m \]

\[E(k) = -\alpha - 6\gamma \left(\sin^2 \left(\frac{ka}{2} \right) + \sin^2 \left(\frac{ka}{2} \right) + \sin^2 \left(\frac{ka}{2} \right) \right) \]

\[\sum_{n=0}^1 e^{-ikx} \]

\[E(k) = -\alpha - 2\gamma \left(\cos(k_{1a}) + \cos(k_{2a}) + \cos(k_{3a}) \right) \]

\[0 \leq \left(\sin^2 \left(\frac{ka}{2} \right) + \sin^2 \left(\frac{ka}{2} \right) + \sin^2 \left(\frac{ka}{2} \right) \right) \leq 3 \]
In order to plot energy contour, we would first plot the Fermi surface, and then find intersections of an specific plane with the Fermi surface:

\[E(k) = E_0 + 4\gamma \left(\sin^2\left(\frac{k_x}{a}/2\right) + \sin^2\left(\frac{k_y}{a}/2\right) + \sin^2\left(\frac{k_z}{a}/2\right) \right) \]

To find the effective mass:

\[m^* = \frac{\hbar^2}{2\gamma a^2} = \frac{\hbar^2}{2m} \]

Near the \(\Gamma \) point the bandstructure is spherical.

\[
\begin{align*}
(\sin(k_x/a)/2) &= k_x/a/2, & (\sin(k_y/a)/2) &= k_y/a/2, & (\sin(k_z/a)/2) &= k_z/a/2
\end{align*}
\]

\[E(k) = E_0 + 4\gamma \left(\sin^2\left(\frac{k_x}{a}/2\right) + \sin^2\left(\frac{k_y}{a}/2\right) + \sin^2\left(\frac{k_z}{a}/2\right) \right) \]

\[E(k) - E_0 = 4\gamma \left(\sin^2\left(\frac{k_x}{a}/2\right) + \sin^2\left(\frac{k_y}{a}/2\right) + \sin^2\left(\frac{k_z}{a}/2\right) \right) \]

\[= \gamma a^2 \left(k_x^2 + k_y^2 + k_z^2 \right) = \gamma a^2 k^2 \]

How about the band width along (100) direction? \(\Gamma(0,0,0) \rightarrow X(k_x = \pi/a, k_y = 0, k_z = 0) \)

\[E(k_x) - E_0 = 4\gamma \left(\sin^2\left(\frac{k_x}{a}/2\right) \right) \]

\[E_{\text{max}} = 4\gamma \]

The result of the last practice will be similar to the following Fermi surface:

Near the \(\Gamma \) point the shape of the Fermi surface is spherical. But far from it the deviation is observed.

A typical energy contour can be as follows:

Practice

Plot the above Fermi surface in 3 wave vector space dimensional space.
BAND STRUCTURE PLOTTING FOR A BODY CENTERED CUBIC LATTICE BASED ON TIGHT BINDING MODEL

\[\rho_m = (\pm a/2, \pm a/2, \pm a/2) \]

\[
E(k) = -\alpha - \gamma \sum_{m=1}^{3} e^{-ik_m}
= -\alpha - \gamma \left[e^{-ik_x a/2} + e^{ik_x a/2} + e^{-ik_y a/2} + e^{ik_y a/2} + e^{-ik_z a/2} + e^{ik_z a/2} \right]
\]

\[
E(k) = -\alpha - 4\gamma \left(\cos(k_x a/2) + \cos(k_y a/2) + \cos(k_z a/2) \right)
\]

PRACTICE

Find the band structure of a fcc lattice based on the tight binding model:

\[
E(k) = -\alpha - 8\gamma \cos(k_x a/2) \cos(k_y a/2) \cos(k_z a/2)
\]

Figure 10.6

A tight-binding calculation of the 4 bands of an fcc lattice. It illustrates the intrinsic degeneracy of the lowest band at \(k = 0 \) and the absence of degeneracy along \(k \). The figure shows the bands along which \(E \) is plotted, as shown in Figure 10.3. Note the characteristic degeneracy along \(X \) and \(X \), and the absence of degeneracy along \(K \). The great width of the bands indicates the inadequacy of an elementary treatment.