Compact groups with a set of positive Haar measure satisfying a nilpotent law

BY ALIREZA ABDOLLAHI AND MEISAM SOLEIMANI MALEKAN
Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan 81746-73441, Iran.
e-mails: a.abdollahi@math.ui.ac.ir, msmalekan@gmail.com
(Received 03 February 2021; Revised 24 June 2021; Accepted 24 June 2021)

Abstract

The following question is proposed by Martino, Tointon, Valiunas and Ventura in [4, question 1.20]:
Let G be a compact group, and suppose that

$$N_k(G) = \{(x_1, \ldots, x_{k+1}) \in G^{k+1} \mid [x_1, \ldots, x_{k+1}] = 1\}$$

has positive Haar measure in G^{k+1}. Does G have an open k-step nilpotent subgroup?

We give a positive answer for $k = 2$.

2020 Mathematics Subject Classification: 22C05, 43A05 (Primary); 20P05 (Secondary)

1. Introduction and results

Let G be a (Hausdorff) compact group. Then G has a unique normalised Haar measure denoted by m_G. The following question is proposed by Martino, Tointon, Valiunas and Ventura in [4, question 1.20].

Question 1.1 [4, question 1.20]. Let G be a compact group, and suppose that $N_k(G) = \{(x_1, \ldots, x_{k+1}) \in G^{k+1} \mid [x_1, \ldots, x_{k+1}] = 1\}$ has positive Haar measure in G^{k+1}. Does G have an open k-step nilpotent subgroup?

Here $[x, y] := x^{-1}y^{-1}xy$ for elements x, y of a group and $[x_1, \ldots, x_k, x_{k+1}]$ is a left normed commutator defined inductively as $[[x_1, \ldots, x_k], x_{k+1}]$ for $k \geq 2$.

A positive answer to Question 1.1 is known for $k = 1$ (see [3, theorem 1.2]). It follows from [4, theorem 1.19] that Question 1.1 has positive answer for arbitrary k whenever we further assume that G is totally disconnected (i.e., profinite). Here we give a positive answer to Question 1.1 for $k = 2$ (see Theorem 1.2 below).

Theorem 1.2. Let G be a compact group, and suppose that $N_2(G) = \{(x_1, x_2, x_3) \in G \times G \times G \mid [x_1, x_2, x_3] = 1\}$ has positive Haar measure in $G \times G \times G$. Then G has an open 2-step nilpotent subgroup.
2. A preliminary lemma

We need the following lemma in the proof of our main result.

Lemma 2.1 Suppose that $x_1, x_2, x_3, g_1, g_2, g_3$ are elements of a group such that $[x_1 u_1, x_2 u_2, x_3 u_3] = 1$ for each triple of the following triples (u_1, u_2, u_3):

$$(1, 1, 1), (g_1, g_2, g_3), (g_1, g_2, 1), (g_1, 1, g_2);$$

$$(g_1, 1, 1), (g_1, 1, g_3), (1, 1, g_1), (1, g_2, g_1);$$

$$(1, g_2, 1), (1, 1, g_2), (1, g_2, g_3), (1, 1, g_3).$$

Then $[g_1, g_2, g_3] = 1$.

Proof. Note that $[x, y]$ denotes $x^{-1} y^{-1} x y$ and $[x, y, z] = [[x, y], z]$ for arbitrary elements x, y, z of a group. We will throughout use famous commutator calculus identities: $[x y, z] = [x, z]^y [y, z]$ (\dagger) and $[x, y z] = [x, z] [x, y]^z$ ($\dagger\dagger$) for all elements x, y, z of a group, where g^h denotes $h^{-1} g h$. In the following (i) refers to the equality $[x_1 u_1, x_2 u_2, x_3 u_3] = 1$, where (u_1, u_2, u_3) is the ith triple counting them from left to right starting at the top.

$$1 = [x_1 g_1, x_2 g_2, g_3] = [[x_1 g_1, g_2], [x_1 g_1, x_2]]^{g_3}, g_3]$$

by (\dagger\dagger), (2) and (3)

$$= [[x_1 g_1, g_2], [x_1 g_1, x_2]]^{g_3}, g_3]$$

by (4) and (5)

$$= [x_1 g_1, g_2, g_3] = [[x_1, g_2], [x_1, g_2]]^{g_1}, g_1], g_3]$$

by (\dagger), (5) and (6). (I)

On the other hand,

$$1 = [x_1, x_2 g_2, g_1]$$

by (8) and (9)

$$= [[x_1, g_2], [x_1, x_2]]^{g_2}, g_1] = [[x_1, g_2], [x_1, x_2], g_1]$$

by (\dagger\dagger), (1) and (10)

$$= [x_1, g_2, g_1]$$

by (1) and (7). (II)

Also,

$$1 = [x_1, x_2 g_2, g_3]$$

by (9) and (11)

$$= [[x_1, g_2], [x_1, x_2]]^{g_2}, g_3] = [[x_1, g_2], [x_1, x_2], g_3]$$

by (\dagger\dagger), (1) and (10)

$$= [x_1, g_2, g_3]$$

by (1) and (12). (III)

Now it follows from (I), (II) and (III) that $[g_1, g_2, g_3] = 1$.

Remark. The “left version” ($g_1 x_1$ instead of $x_1 g_1$) of Lemma 1.2 is not clear to hold. The validity of a similar result to Lemma 1.2 for commutators with length more than 3 is also under question.

3. Compact groups with many elements satisfying the 2-step nilpotent law

We need the “right version” of [5, theorem 2.3] as follows.

Theorem 3.1 If A is a measurable subset with positive Haar measure in a compact group G, then for any positive integer k there exists an open subset U of G containing 1 such that $m_G(A \cap U u_1 \cap \cdots \cap U u_k) > 0$ for all $u_1, \ldots, u_k \in U$.

Downloaded from https://www.cambridge.org/core. IP address: 188.159.160.11, on 20 Jul 2021 at 05:59:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004121000542
Proof. Since $m_G(A) = m_G(A^{-1})$, it follows from [5, theorem 2.3] that there exists an open subset V of G containing 1 such that

$$m_G(A^{-1} \cap v_1 A^{-1} \cap \cdots \cap v_k A^{-1}) > 0$$

for all $v_1, \ldots, v_k \in V$. Now take $U := V^{-1}$ which is an open subset of G containing 1. Thus for all $u_1, \ldots, u_k \in U$

$$m_G(A \cap Au_1 \cap \cdots \cap Au_k) = m_G((A \cap Au_1 \cap \cdots \cap Au_k)^{-1}) = m_G(A^{-1} \cap u_1^{-1} A^{-1} \cap \cdots \cap u_k^{-1} A^{-1}) > 0$$

This completes the proof.

Now we can prove our main result.

Proof of Theorem 1.2. Let $X := N_2^0(G)$. It follows from Theorem 3.1 and [2, theorem 4.5] that there exists an open subset $U = U^{-1}$ of G containing 1 such that

$$X \cap X\bar{u}_1 \cap \cdots \cap X\bar{u}_{11} \neq \emptyset$$

(*)

for all $\bar{u}_1, \ldots, \bar{u}_{11} \in U \times U \times U$. Now take arbitrary elements $g_1, g_2, g_3 \in U$ and consider

$$\bar{u}_1 = (g_1^{-1}, g_2^{-1}, g_3^{-1}), \bar{u}_2 = (g_1^{-1}, g_2^{-1}, 1), \bar{u}_3 = (g_1^{-1}, 1, g_2^{-1})$$

$$\bar{u}_4 = (g_1^{-1}, 1, 1), \bar{u}_5 = (g_1^{-1}, 1, g_3^{-1}), \bar{u}_6 = (1, 1, g_1^{-1}), \bar{u}_7 = (g_2^{-1}, 1, g_1^{-1})$$

$$\bar{u}_8 = (1, g_2^{-1}, 1), \bar{u}_9 = (1, 1, g_2^{-1}), \bar{u}_10 = (1, g_2^{-1}, g_3^{-1}), \bar{u}_11 = (1, 1, g_3^{-1})$$

By (*), there exists $(x_1, x_2, x_3) \in X$ such that all the following 3-tuples are in X:

$$(x_1g_1, x_2g_2, x_3g_3), (x_1g_1, x_2g_2, x_3), (x_1g_1, x_2, x_3g_2)$$

$$(x_1g_1, x_2, x_3), (x_1g_1, x_2, x_3g_3), (x_1, x_2, x_3g_1), (x_1, x_2g_2, x_3g_1)$$

$$(x_1, x_2g_2, x_3), (x_1, x_2, x_3g_2), (x_1, x_2g_2, x_3g_3), (x_1, x_2, x_3g_3).$$

Now Lemma 2.1 implies that $[g_1, g_2, g_3] = 1$. Therefore the subgroup $H := \langle U \rangle$ generated by U is 2-step nilpotent. Since $H = \bigcup_{n \in \mathbb{N}} U^n$, H is open in G. This completes the proof.

We finish with the following open question that would resolve Question 1.1 for arbitrary k:

Question 3.2 Are there finitely many words $w_{ij} (1 \leq i \leq n, 1 \leq j \leq k + 1)$ in the free group on $k + 1$ generators such that if G is a compact group, $(x_1, \ldots, x_{k+1}), u = (u_1, \ldots, u_{k+1}) \in G^{k+1}$ and $[x_1 w_{i1}(u), \ldots, x_{k+1} w_{i,k+1}(u)] = 1$ for all $i \in [1, \ldots, n]$ then $[u_1, \ldots, u_{k+1}] = 1$?

Acknowledgements. The authors are grateful to the referee for their valuable comments. The research of the second author was in part supported by a grant from Iran National Science Foundation (INSF) (No: 99010672).

REFERENCES

